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ABSTRACT 

The main result of the paper says, in particular, that if M is a complete 

simply connected Riemannian manifold with Ricci curvature bounded from 

below and without focal points, which is also a hyperbolic metric space in 

the sense of Gromov, then the top A of the L2-spectrum of the Laplace- 

Beltrami operator A is negative, the Martin boundary of M corresponding 
to A is homeomorphic to the sphere at infinity S(cc), and the harmonic 
measures on S(oo) have positive Hausdorff dimensions. These generalize 
the results of [AS], [Anl], [gi], [KL] and [BK]. Moreover, if dim M = 2, then 
in the presence of the other conditions the hyperbolicity is also necessary 
for A < 0. The machinery consists of a combination of geometrical and 
probabilistic means. 

1. I n t r o d u c t i o n  

Let M be a complete,  s imply connected n-dimensional,  n _> 2, C 3 Riemannian  

manifold wi thout  focal points which will be called here a generalized C a r t a n -  

H a d a m a r d  (CH) manifold, reserving the name CH-manifold for the case when 

all sectional curvatures of M are nonpositive. Then  there is a natura l  geometric 

compactif icat ion of M by the sphere at  infinity S(oo) which is the set of classes of 

asymptot ic  geodesics (see [Go2]). Let A denote the Laplace-Bel t rami  operator  on 

M;  then C2-functions h on M satisfying A h  = 0 are called harmonic.  I t  is known 
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(see [AS], [Anl], [Ki]) that if all sectional curvatures of M are sandwiched between 

two negative constants, then the space of minimal positive harmonic functions 

coincides with the Martin boundary of M (constructed for the operator A) which 

turns out to be homeomorphic to S(oo). Furthermore, the Dirichlet problem at 

infinity has a unique solution, i.e. there is a one-to-one correspondence between 

continuous functions ] on S(oo) and harmonic functions h /hav ing  a continuous 

extension to S(co) given by the formula 

(1.1) hf(x) = f s  f(~)P(x,d~) 
(~) 

where P(x, .), x C M are probability measures on S(cc), called the harmonic 

measures. 

It is known (see [Eb2]) that if M has nonpositive sectional curvature, then M 

has no focal points and that the "no focal points" condition is equivalent to the 

strict growth in t of the norm IIJ(t)ll for any Jacobi field J(t), J(O) = O, J'(O) ¢ 0 
on each geodesic "y(t), t > 0. Let S~M be the sphere of unit vectors from the 

tangent space T~M of M at x. By [Go2] the "no focal points" assumption implies 

that the map ¢2~= : S~M --* S(oo), which maps a vector ~ E S~M to the end at 

ec of the geodesic with initial velocity ~, is a homeomorphism. It turns out (see 

[Ka], [L]) that,  in general, the measure v~ = ¢-~lP(x, .) on S~M is singular with 

respect to the Lebesgue measure on S~M. Nevertheless, if all sectional curvatures 

of M are sandwiched between two negative constants, the Hausdorff dimension 

of v~ is positive (see [KL]). 

The probabilistic approach of [Ki] and [KL] did not need explicitly the curva- 

ture assumptions above, but required that M has bounded geometry, geodesics 

diverge exponentially fast, and Ap _ const > 0 with p(x) = dist(x, x0). In [BK], 

which treats the case when M is the universal cover of a compact surface of non- 

positive curvature, we showed that after some modification the method works 

under somewhat relaxed conditions allowing one to consider certain classes of 

manifolds with nonpositive rather than negative curvature. In this paper I make 

another step forward considering manifolds without focal points which are also 

hyperbolic metric spaces in the sense of Gromov. The latter means that there 

exists ~ > 0 such that for any geodesic triangle each point lying on one side 

is within distance ~ from the union of two other sides (see, for instance, [Gro], 

[CDP]). I will call such manifolds hyperbolic. If M has nonpositive curvature, 
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then M is hyperbolic if any only if it satisfies the Uniform Visibility Axiom from 

[Ebl]. 

Let p( t , x , y )  be the heat kernel on M (see [Ch]), i.e. the minimal positive 

fundamental solution of the parabolic equation Op/Ot = Ap where A is applied 

in the x-variable. The following is the main result of this paper. 

THEOREM A: Let M be a hyperbolic generalized CH-manifold with the Ricci 

curvature bounded from below. Then there exists c > 0 such that for any x, y E 

M and t > O, 

(1.2) p(t, x, y) <_ c - i t  -~/2 min(exp(-ct), exp(-cd(x,  y))) 

where d is the distance function on M. It follows that i f  A is the top of the 

L2-spectrum of A (see [Ch]), then A <_ -c .  

Theorem A will be proved by a combination of geometrical considerations of 

Section 2 and the probabilistic machinery of Section 3. If the sectional curva- 

ture of M is sandwiched between two negative constants, then the positivity of 

-A is known by [MK]. In fact, the hyperbolicity is not necessary for Theorem 

A and I prove it under the more general K-condition (see Section 2) which im- 

plies uniform exponentially fast volume growth of all balls and is equivalent to 

the hyperbolicity when dim M = 2 but in the multidimensional case allows, for 

instance, to have some imbedded flat plane s . Moreover, the K-condition implies 

not just (1.2) but also stronger results of Section 3 about the radial behavior of 

the Brownian motion on M which are needed, in particular, in Section 4 for the 

proof of Theorem B. I give several sufficient conditions for the K-condition to be 

satisfied both in terms of the curvature and in terms of the volume growth. In 

particular, for the two-dimensional case these lead to a necessary and sufficient 

condition for the positivity of -A. 

ASSERTION: Let M be a generalized CH-manifold with dimM --- 2 and the Ricci 

curvature bounded from below. Set v(r) = inf~EM m( B , ( r )  ) where B~(r) is the 

ball of radius r centered at x. Then A < 0 if and only if  

(1.3) lim r-2v(r) = c~ 
T - ~ O ¢ )  

which is equivalent in this case to the hyperbolieity of M. 

In fact, by Proposition 2.9 and Corollary 2.17 for generalized CH-manifolds the 

equality (1.3) is equivalent to the uniform exponentially fast growth of volumes 
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of all balls. It is plausible that also in the multidimensional case the latter is 

equivalent to the positivity of -A. We remark that an exponentially fast growth 

of volumes of balls centered at one point does not suffice for the positivity of -A, 

since in this case one still may have a sequence of Euclidean balls B ~  (r,~) C M 

with r,, -+ c¢ which leads to A = 0. In view of [An2] the following results are, 

mainly, the corollaries of Theorem A but I shall outline also their probabilistic 

proof which goes similarly to [Ki], [KL], and [SKI. 

THEOREM B: Let M be as in Theorem A. Then the Dirichlet problem at infinity 

has a unique solution given by (1.1). Furthermore, the harmonic measures P( x, .) 

are positive on open subsets of S(oo), they have no atoms, and their Hausdorff 

dimensions are positive. 

THEOREM C: Let M be as in Theorems A and B. Then the space of minimal 

positive harmonic functions on M coincides with the Martin boundary OM of M 

for the operator A and it is homeomorphic to S(oo). If, in addition, M satisfies 

the Uniform Visibility Axiom (see Section 2), in particular, if M has nonpositive 

sectional curvatures, then there exists a natural Hhlder structure on OM and 

the above homeomorphism between OM and S(oe) is H61der continuous together 

with its inverse. 

Recall that  Martin's scheme requires the existence of, so-called, Green's func- 

tion G(x, y) for the operator A which is positive, harmonic in x for x ¢ y, has cer- 

tain singularity when x --+ y, and, in our case, tends to zero when dist(x, y) ---* c¢. 

Next, one studies limit points of the ratios 

K(x, Yn) - G(x, yn) 
a(xo, ~) 

for a sequence (Yn} having no limit points in compact subdomains. This enables 

one to produce certain compactification whose boundary is called the Martin 

boundary. This boundary often coincides with, but in general includes, the space 

of minimal positive harmonic functions. Finally, every positive harmonic function 

can be represented as an integral over this space. In our circumstances, G(x, y) = 

f o  p(t, x, y)dt and it exists by (1.2). 

In [An2] Ancona extended his potential theory method to show that  if M is 

a hyperbolic manifold with bounded geometry and the Ricci curvature bounded 

from below, then the Martin boundary of M for the operator A is homeomorphic 
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to its geometric boundary constructed by Gromov provided that the operator A 

is weakly coercive, i.e. the operator A + ~ admits the Green function for some 

> 0. The key improvement given by Theorem A is that if M is a generalized 

CH-manifold with the Ricci curvature bounded from below, then hyperbolicity 

of M already implies weak coercivity of A, since (1.2) yields the Green function 

for any A + ~ with ~ < c. If there is a discrete group F of isometries of M such 

that the quotient N = M/F is compact, then hyperbolicity of M implies that F 

is a hyperbolic group, and so it is nonamenable (cf. Assertion 5.3.A in [Gro]). 

Then by [Br] the top of the L2-spectrum of A on M is negative, and so in this 

case Theorem A follows. 

The key fact employed in the proof of Theorems A-C is the result from [Ca] 

(see also [Gro]) saying that the hyperbolicity of M is equivalent to a certain 

type of exponential divergence of geodesics similar to what was used in [BK]. 

It turns out that this implies also the positivity of Ap, p(x) = d(x, xo) on a 

"well spread" set (see Lemma 2.14 ) which enables us to keep control on the 

drift towards S(¢c) of the Brownian motion on M and to go ahead with our 

probabilistic approach. The lower bound on the Ricci curvature provides upper 

bounds on Ap which is the radial drift of the Brownian motion on M, and on 

the divergence rate of geodesics which is important in all known approaches to 

the problem. Note that I need neither bounded geometry nor upper curvature 

bounds assumptions for Theorems A-C. Actually, in view of [AC], a lower bound 

on the Ricci curvature together with the "no conjugate points" assumption yield 

the bounded geometry. If the "no focal points" condition is replaced by the 

"no conjugate points" assumption then Ap may become negative at some points 

which complicates the situation. Still, some generalizations to the "no conjugate 

points" case are possible and they are discussed at the end of this paper. 

I would like to thank W. Ballmann, M. Brin, P. Eberlein, J.Cao, and C.Croke 

for their useful remarks concerning certain geometric points of Section 2. I thank 

also an anonymous referee for his comments and suggestions. After this paper was 

first submitted in August 1992 J. Cao sent me a preprint [Caol] where he gives 

another proof of Theorem A for CH-manifolds and later, after learning about 

my paper, he proved Theorem A in [Cao2] under the "no conjugate points" in 

place of the "no focal points" condition using quite different methods than ours 

based on Kanai's rough isometries technique and combinatorial isoperimetric 

constants which yielded a new estimate of the Cheeger isoperimetric constant. 
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My probabilistic approach also suggests some generalizations which are discussed 

in Section 6. Some parts of this paper were written during my visit to the 

Max-Planck Institute in Bonn in April 1992 in course of the special activity on 

Stochastic Analysis and Geometry where I presented the main results of this 

paper. Some revisions were made in July 1992 during my stay at the University 

of Warwick and in September-October 1992 during my visit to the University of 

North Carolina at Chapel Hill. 

2. G e o m e t r i c  p re l iminar ies  

Let M be a generalized CH-manifold. Then any two points can be joined by a 

unique geodesic. Following [Ca] a geodesic triangle in M will be called 5-thin if 

each point on one side is within distance 5 from the union of two other sides. 

If there exists 5 > 0 such that any geodesic triangle is 5-thin, then M is called 

hyperbolic. Let d(x, y) denotes the distance between x, y C M. For each x E M 

set Bx(r) = {y e M : d(x,y) < r}, S~(r) = {y e M : d(x,y) = r}, B~(r) = 
M \  Bx(r). For all y,z  e B~(r) put d~(y,z) = inf{length ~/17 : [0, a] -~ M 

is a smooth curve, 7 C B~(r), 7(0) = y,~/(a) = z}. One says that geodesics 

emanating from x diverge C-exponentially fast, C > 0, if for any two geodesic 

segments 71 and 72 starting at x, any numbers r, p such that 0 < r < r + C _< p, 

and any points Yl, zl E 71 and Y2, z2 e 72 satisfying yl, Y2 E S~(r) and Zl, z2 C 

S~(p), it follows that 

1 p 
(2.1) d~(yl, y~) < ~dAZl, z2) + C. 

2 4d~ Remark that  if d~(yl,Y2) ~ 3C then d~(Zl,Z2) >_ 2dx(yl ,y2)-  C >_ ~ x(Yl,Y2), 
and so 

(2.2) dP~( zl, z2) ~_ ( 3 )  c ( ~ ) c-l(P-r) d:(yl,y2), 

i.e. (2.1) implies that  the geodesics emanating from one point start diverging 

exponentially fast after they diverge 3C apart with respect to the distance d~. 

2.1. PROPOSITION (see [Ca]): (i) If any geodesic triangle is f-thin, then 

geodesics emanating from any point x diverge 115-exponentially fast. 
(ii) If geodesics emanating from any point x diverge C-exponentially fast, then 

each geodesic triangle is 34C-thin. 
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Let M be a generalized CH-manifold. Then for any x C M the exponen- 

tial map Expx : TxM ~ M is a diffeomorphism, where TxM denotes the tan- 

gent space at x. Hence there is a global system of geodesic polar coordinates 

which assigns to each z E M the pair (r, ~) where r = d(x, z) and ~ E S , M  = 

{¢ C TxMI]](]] = 1}. For each ( e S~M, let ~± be the orthogonal comple- 

ment of the one-dimensional subspace of TxM generated by ~, and let Tt : 

T~M ~ TExpxt~M denote the parallel translation along the geodesic 7~ with 

7~(0) = x and ~/~(0) = ~. Following [Ch] define the path of linear transforma- 

tions .Ax(t, ~) : ~± ~ ~± by A~(t, ~)71 = v t l J ( t ) ,  where J(t)  is the Jacobi field 

along 7~ determined by the initial conditions J(0) = 0, J '(0) = r/. Then (see 

[Ch]) one can write the Riemannian metric form in geodesic polar coordinates in 

the following way: 

ds 2 = dr 2 + lAx(r, ~)d~[ 2, 

Thus, in these coordinates the Laplace-Baltrami operator has the form 

0 2 0 
(2.3) ~ = ~ 2  + Q ~ ( ~ , ~ ) ~  + ~ 

where A~ does not contain derivatives in r, 

(2.4) Qx(r, ¢) = O(logA~(r ,¢))  = Ape(r), 

p¢ is the distance function from x, and Ax(r,~) = det.4~(r,~) is the ( n -  1)- 

dimensional volume element on S~(r) at the point (r, (). 

2.2. LEMMA: Let M be a generalized n-dimensional CH-manifold. Then for aH 

x E M, ~ C S~M, and r > O, 

(2.5) Qx(r, ~) > O. 

Suppose, in addition, that the Ricci curvature of M is bounded from below by 

- k2 (n  - 1). Then 

(2.6) Qx(r, ~) <_ C(r) d--e---fk(n - 1) coth(kr) = (n - 1)k(e kr + e-kr)(e k~ - e-k~) -1 

and if J(t) is any perpendicular Jacobi field along the geodesic ~ ,  "y¢(O) = x, 

~ ( 0 )  = ¢ such that J(0)  = 0, IIJ'(0)fl = 1, then ~or all t > 0, 

d 
(2.7) d~ log Ilg(t)ll <__ C(t), 
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and so for all t >_ s > O, 

[[J(t)][ _< IlJ(s)ll exp C(u)du < [IJ(s)[[e (t-~)C(~). 

It follows also that for any p > r > O, and every curve cr C Sx(r),  

(2.8) length 7r~°a _< exp C(u)du length a <_ e(°-r)c(r)length a 

where rr~y = Expx(pr- lExp-21y)  is the projection of y e S~(r) to Sx(o) along 

geodesics emanating from x. In particular, for any ~, rl E S ~ M  and p > r > 0, 

a~(Exp~o(, Exp~p~) _< exp C(~)du d ; ( n x p ~ ,  Exp~r~). (2.9) 

Proof: By [Ch], p. 69, 

(2.10) Qx(t ,~)  = E dlogllJ~(t) l l  
n-1_>i_>1 

where J~(t), i = 1 , . . . ,  n - 1 are Jacobi fields along 7~ determined by the initial 

conditions Ji(O) = O, J~(O) = ei with {e l , . . . ,  en-1} being an orthonormal basis 

of ~±. By fEb2] the "no focal points" property implies the positivity of each 

derivative in the right hand side of (2.10), and so (2.5) follows. If the Ricci 

curvature is bounded from below by - k ~ ( n  - 1), then by Bishop's comparison 

theorem (see [Ch]), (2.6) holds true. Since each term of the sum in the right 

hand side of (2.10) is positive, it follows that 

d 
d-~logilJi(t)ll < k ( n -  1) coth(kt), i = 1 , . . . , n -  1. 

This yields (2.7), since an orthonormal basis {ea , . . . , en_ l}  of ~± which pro- 

vides the initial conditions for Ji(t) ,  i = 1 , . . . ,  n - 1 can be chosen arbitrarily. 

Finally, (2.8) and (2.9) follow from (2.7). Note that one can translate both 

the statement and the proof of this lemma into the language of the operator 

U~(r, ~) = .A~(r, ~).A-~l(r, ~) of the second fundamental form of S~(r) (see [Ch] 

and [Gra D. Then Q~:(r,~) = trU~(r,~) (tr denotes trace) and we derive (2.5)- 

(2.7) from the convexity of S~(r) (see fEb3]) and Bishop's comparison theorem. 
| 

Let M be a generalized CH-manifold. For any x, y E M there is a unique 

geodesic "y~y such that ~/~u(0) = x and "),~y(t) = y where t = d(x ,y ) .  Let 
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£p denote the angle between vectors in the tangent space TpM given by the 

Riemannian metric. For p E M, v E TpM,  x, y E M \ ( p} ,  F C M \{p} set 

Zp(x, y) = % ( 0 ) ) ,  z (v ,  = z (v ,  

and Zp(r) = sup{Zp(x, y)lx,  y E r}. 

2.3. LEMMA: Let  M be a generalized CH-manifold. Then for any x E M 

there exist c~ > 0 and an increasing positive function q~(t) on [1, oc) with 

limt_-.~ q. ( t )  = cc such that  for any perpendicular Jacobi field J( t ) ,  J(O) = O, 

IIJ'(0)ll = 1 on each geodesic V emanat ing from x, 

(2.11) IIJ(t)ll >_ q~(t)lIJ(1)l I and I[J(1)[I _> c~. 

The constant e~ can be chosen so small that for any smooth curve a C S~(1), 

(2.12) length a > e , Z , ( a ) .  

I t  follows that  for any smooth  curve rr C S~(r), r > 1, 

(2.13) length a ~> qx(r)length ~r~a > cxq~(r)Zx(a)  

where ~r~ is the same as in Lemma 2.2. I f  the curvature of M is nonpositive, then 

one can take q~ (t) = t and c~ = 1. 

Proof: The existence of c~ satisfying (2.11) and (2.12) follows from compactness 

of closed balls B~(1) and the continuous dependence of Jacobi fields on initial 

conditions. Set 

q~(t) = inf(llJ(t)l l l ld(1)ll-1),  t >_ 1, 

where the infimum is taken over all perpendicular Jacobi fields J( t ) ,  J(O) = O, 

IIJ'(0)ll -- 1 along geodesics emanating from x. Then q~(t) is an increasing in 

t function since in a generalized CH-manifold the norms IIJ(t)]l of all 3acobi 

fields, as above, grow in t. By [Gol], l imt-.~ q~(t) = oc. We remark that this 

follows also from [Ebl] and [Eb2] under the additional assumption that sectional 

curvature of M is bounded from below but, in fact, the proof there requires 

only the uniform bound (2.7). The inequality (2.13) is a direct consequence of 

(2.11) and (2.12). If M has nonpositive curvature, then by the Rauch comparison 

theorem (see [GKM]) perpendicular Jacobi fields on each geodesic grow, at least, 

as fast as in the zero curvature case, and so one can take q~(t) -- t and c~ = 1 

for all x E M. | 
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2.4. LEMMA: Let M be a generalized CH-manifold. Then for all x C M and 

any smooth curve a :  [0, a] ~ M, a C B~(r), 

(2.14) length 7r~a < length ~. 

The equality in (2.14) holds true if and only i ra  C S~(r). 

Proof: Let 6 > 0 be a small number and bo E [0, a-6], so that 5 : [bo, bo+5] --* M 

is a small piece of the curve ~r. Set ro = inf{d(x,y)[y E 5} and suppose that 

Yo E ~ is the point where ro = d(yo, x). I claim that 

(2.15) length 1r~°5 < length ~ + o(5). 

Indeed, up to an error of order o(6) one can pass to the metric 

i , j  

freezing the coefficients of the original metric form ~-~ij gij(x) dxidxj at x0 and 

arriving at the linear problem of projecting ~ in R d to a hyperplane F along 

parallel lines orthogonal to F with respect to the inner product generated by 

(gij (Xo)). Measuring the length with respect to the metric dso we arrive easily at 

(2.15). Next, since ro >__ r and the "no focal points" property implies the growth 

of all perpendicular Jacobi fields along geodesic emanating from x, it follows that 

length ~r~5 = length ~ ~o- ~rg~ a < length r~°~ 

which yields (2.14). This inequality is strict if ro > r. | 

Following [Ebl] one says that  M satisfies the Visibility Axiom if for any ~ > 0 

and p E M there exists a number r(¢,p) such that, if ~/C B~(p), p > r(e,p) is a 

geodesic segment, then Zp(y) < e. If r(¢,p) -- r(¢) is independent of p, then M 

is said to satisfy the Uniform Visibility Axiom. 

2.5. PROPOSITION: Let M be a generalized CH-manifold. 

(i) I f  M satisfies the Uniform Visibility Axiom with r(¢), then all geodesic 

triangles are r(6~)-thin for any ~i E (0, 1). b'hrthermore, let a C Sp(p) be a 

smooth curve. Then 

length a > 2 ( p -  r(~Zpa)) for any ~ E (0, 1). 
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(ii) If all geodesic triangles in M are 6-thin, then M satisfies the Visibility 

Axiom with some r(e,p). If, in addition, M has nonpositive sectional cur- 

vature, then it satisfies the Uniform Visibility Axiom with r(e) = 4& -1. 

Proof 
(i) Let {A, B, C} be a geodesic triangle with vertices A, B, C and let x be 

an arbitrary point on the geodesic segment ~/BC. If for some e > 0 both 

d(X,'YAB) >_ r(e) and d(x, TAG) >_ r(e), then max(Zx(A, B), Zx(A, C) ) < e. 

Since Z=(A, B) + Zx(A, C) = 7r then e >_ ~, and so {A, B, C} is r(6~)-thin 

if 0 < 6 < 1. Next, let a C Sp(p) be a smooth curve with endpoints y and 

z. Then the geodesic segment "~yz satisfies d(p, "y~z) >_ p -  ½length 7~ ,  and 

so r(6Zpa) >_ p - ½1engthTyz >_ p - ½length a if 0 < 6 < 1, completing the 

proof of (i). 

(ii) Let d(p, 7AB) = r for some points A, B, and p. Consider the geodesic tri- 

angle {p, A, B} and take x E "~vA such that  d(p, x) = r/2. Then d(x, "YAB) >_ 

r/2. Let d(x, ~pB) = r and y e "TpS satisfies d(x, y) = ~. If ~yAB~/4(p) # 0 

then ~ >_ r/4.  If 7~y C B~/4(p) then, by Lemmas 2.3 and 2.4, 

= length 7,y >_ %qp(r/4)Xp(TAB). 

Since {p, A, B} is 6-thin, then for r > 46, Zp(TAS) <_ 6c;l(qp(r/4)) -1, and 

so one can take r(e,p) = 4q~-l(6c~le -1) where q~l is the inverse function 

for qp. If M has nonpositive curvature then, by Lemma 2.3, Cp = 1 and 

qp(t) = t, and so r(e,p) = r(e) = 4~e -1. | 

Let Cp(~,6) = Expp{r/C TpM : Zp(~,~) < 6} denote the cone about ~ • SpM 

of angle 6 with vertex at p. 

2.6. LEMMA: Let M be a generalized CH-manffoM satis~ing the Visibility 

Axiom with some r(e, p). Then for any t >_ r(e, p), 

where 7~(t) is the geodesic satisfying "y~(O) = p and ~(0) = ~ • SvM. 

Proof'. Since 7~(t) is orthogonal to Sp(t) at q = 7~(t) (see Lemma 10.5 in [MID, 

then for any ~ • SaM satisfying Zq(~[~(t),~l) < ~ there exists s > 0 such that,  if 

7~ is the geodesic with 3'~(0) = q, %(0) = 7/, then ~n(u) ¢. Bp(t) for all u • (0, s). 

Let s(~) denote the supremum of such s > 0. If s(~/) < c~ then 3',(s(~/)) • S~(t) 
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and, by Lemma 2.4, 3,n(u), 0 < u < s(~/) cannot be a geodesic. Thus s(~) = oo, 

and so • (u)  e Bp(t) for all u > 0. By the Visibility Axiom Xp('~n) _< c provided 

t > r(~,p), and so 3', C Cp(~,~) yielding (2.16). II 

Proposition 2.5 together with the following result from [Ebl] may help the 

reader to clarify what kind of manifolds this paper deals with. 

2.7. PROPOSITION (see [Ebl]): Let M be the universal cover of a compact 

manifold N with a metric g lifted from N. 

(i) I f  (M,g) has nonpositive curvature, then (M,g) satisfies the Uniform 

Visibility Axiom if and only if M contains no totally geodesic isometric 

imbedding of the Euclidean plane. 

(ii) Suppose that M is a generalized CH-manifold with respect both to g and to 

another metric [? lifted from N. Then (M, ~) satisfies the Uniform Visibility 

Axiom if and only if (M, g) does. 

We remark that if M is the universal cover of a compact manifold N with a 

metric lifted from N and it satisfies the Visibility Axiom, then it satisfies the 

Uniform Visibility Axiom. Proposition 2.7 gives the characterization of hyper- 

bolic (generalized) CH-manifolds having a compact quotient. Apart from this 

case note that the hyperbolicity is preserved under quasiisometries (see [CDP]), 

and so those quasiisometries which do not destroy the "no focal points" property 

lead again to manifolds satisfying conditions of Theorems A, B and C. Some 

examples of manifolds without focal points can be found in [Gu]. 

For any x E M, r, 5 > 0, and y E S~(r) set 

D~(y,5) = {z e S~(r) :  d~(y,z) < 5}. 

2.8. LEMMA: Let M be a n-dimensional generalized CH-manifold with the Ricci 

curvature bounded from below by - k 2 ( n  - 1). Then there exist two positive 

functions ¢,q2 on (0, cx~) such that for any x e M,p ,r  > O, and y E Sx(r), 

(2.17) e-2oc(~)¢(p) < m~(D~(y, p)) < ~(p) 

where m~ is the ( n -  1)-dimensional volume on S~ (r) induced by the Riemannian 

metric and C(r) is defined by (2.6). 

Proof." Set U = D~(y, p); then by the triangle inequality 

(2.18) By(2p) D U 7r~U. 
r~p~_t~_r 



Vol. 89, 1995 HYPERBOLIC METRIC SPACES 389 

It follows from (2.4) and (2.5) that for any t >_ r, 

mx( Au)) > m;(u), (2.19) t t 

which together with (2.18) gives 

m(By(2p)) > pint(U). 

By the volume comparison theorems (see [BC], Section 11.10 or [Gra], Section 

3.5) m(By(2p)) does not exceed the volume of a ball of radius 2p in the space of 

constant curvature - k  s yielding the upper bound in (2.17). 

Next, I prove the left hand side of (2.17). By (2.14) and the triangle inequality 

v = [J . I v  D By(p) 
r+2p~t_~r 

where v = Exp~(r + p)~ and ~ = r-lExp~-ly.  In the same way as above 

2pm:+2P(r;+2pu) >_ m(Y) >_ m(Bv(p)). 

By (2.4) and (2.6), 

(2.20) 

and so 

(2.21) 

mi+:o(.;+2ou) _< 

m~(U) > 1/2p-le-2Pc(~)m(Bv(p)). 

From Proposition 14 of [Cr] (which is stated for compact manifolds but works 

for noncompact manifolds as well) it follows that 

m(B~(p)) > cnp n, 

where cn depends only on n = dim M which, together with (2.21), completes the 

proof of the lower bound in (2.17). | 

I will say that M satisfies the K-condition, K > 0 if for any x, y E M there 

exist r, s > 0, s _< K, and a Borel set U C Sx(r) N By(K) such that 

(2.22) m~(U) >_ g -1 and m~+8(~r~r+sV) > (1 + g-1)m~(U). 

The following result says that the K-condition implies the uniform exponen- 

tially fast growth of volumes of all balls. 
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2.9. PROPOSITION: Let M be a generalized CH-manifold with the Ricci curva- 

ture bounded from below satisfying the K-condition. Then there exists 6 > 0 

such that, for any x E M and r >_ 6 -1, 

(2.23) m(B~(r)) >_ e ~.  

Proo~ Suppose that the K-condition holds true with some K > 1. Pick up 

some x E M and p _> K. On the sphere S~(p) choose a maximal collection of 

points yl,Y2,.. . ,Ye so that d~(yi,yj) > 2K for any i ¢ j .  The word maximal 

means here that one cannot add points to this collection preserving the above 

condition. Then Vi = D~(yi, K) are disjoint for different i's and 

e 

(2.24) U D~(yi, 2K) D S=(p). 
i = l  

- 1  - 1  Set ai = p Exp~ Yi and zi = Expx(p + K)~i. Then by (2.14), 

c W, = U 
p < t < p + 2 K  

The K-condition provides r , s  with 0 < s _< K,  p < r < p + 2K and U C 

Sx(r) N B~,(K) satisfying (2.22). Set U = 7rzPU and U = ~r~+3KU. Then by 

(2.4)-(2.6) and (2.22), 

(2.25) mPz(U) >_ e-2KC(K)mr (U) >_ K-le-2KC(K) 

and 

(2.26) 
- 

m~+3g(/)) > (1 + K- lm~(U)) .  

Set ~ = ~r "+3KV. Then by (2.4), (2.5), (2.17), (2.25), and (2.26), 
X r ~ .  

(2.27) 

~ 

mP+3K (fl~ = + mP+~g ~fs \ ~) 

> (1 + g-1)m (O) + ", 9) 

= (1 + g-lm~(~J)/m~(V~))m~(Vi) 

(1 +/~)m~ (Vi) 
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where/3 = e-2KC(K)K-I(kO(K)) -1. Similarly, by (2.17) and (2.24), 

(2.28) 

+ (b~(p+ 3K)) _> m p + 3 K [ °  " 

i i 

>__ (1 + 13)mP~( U Vi) + m~(S~(p) \ U V~) 
i i 

___ + ) 
i 

>_ m2(S~(O))(1 + ilL) 

where L = e-2kc(1))¢(K)(~(2K))-l.Then (2.23) holds true with 

6 = (9K) -1 rain(l, log(1 + ~L)) .  | 

2.10. LEMMA: 

(i) Let M be a hyperbolic generalized CH-manifold with the Ricci curvature 

bounded from below. Then M satisfies the K-condition with some K > 0. 

(ii) Let M be a 2-dimensionM generalized CH-manifold with the Ricci curvature 
bounded from below and satisfying the K-condition. Then M is hyperbolic. 

Proof'. By hyperbolicity there exists C > 0 such that geodesics emanating from 

any x E M diverge C-exponentially fast. Consider D~(y, 3C) with r _> 2C. Let 

if(t) = ?xy(t) for 0 < t < r and ~(-r)  = z E S~(r) be a geodesic segment. Then 

d~(y, z) >_ d(y, z) = 2r, and so z ¢ D~(y, 3C). Hence D~(y, 3C) is a proper subset 

of S~(r), and so the boundary 8D~(y, 3C) is not empty. Set t0 = integral part of 

(1+2L~2(3C)(¢(3C)) -1) where L = e 6c(2C)C and C comes from (2.1) while C(p) 

comes from (2.6). If ro = ((log 2) -1 logto + C)C then by (2.2) with p = r + ro 

for any point v C OD~(y, 3C), d~(~r~y, 7r~v) >_ 3Cto. Thus one can pick up points 
p r wo = ~r~Py, wl, w2 . . . ,  weo-~ in n~D~(y, 3C) such that dP~(w~_~, w~) = 3C for all 

i = 1 , 2 , . . . , t o -  1, and so that 

p 7" ~ . .  _ _  DP,(wi, C) C rxDx(y,3C ), i O, .,to 1 

and D~(wi, C) n D~(wj, C) = • for all 0 _< i < j _< to - 1. Then by (2.17), 

(2.29) m e (~r~D~ (y, 3C)) _> Q L -  1¢(3C) 

>_ toL-l¢(3C)( @(3C) )-lm~( D~(y, 3C)) 

>_ 2mi(D;(y, 3C)). 
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Now take any z, ~ E M and set r = max(2C, d(x, ~))), y = r~)  if ~) # x and y 

is any point on S~(2C) if ~) = x. Repeat the above construction with such x, y, 

and r. Then 

(2.30) U t ~ Bg(5C+ ro). traDe(y, 3C) C 
r~-ro~t~r 

By (2.29) and (2.30), M satisfies the K-condition with 

K = max(5C -4- ro + 1, L(¢(3C))-1).  

(ii) Let now M be a 2-dimensional generalized CH-manifold satisfying the 

K-condition, K > 1. Pick up an arbitrary x E M and z,v E S,(r)  with some 

r > K so that d~(z, v) = 2p and 2K > p _> K. Let w E S~(r) satisfy d~(w, z) = 

d~(w, v) = p. Set ~ = r-lExp~-lw and y = Exp~(r + K)~. It follows from (2.14) 

that 

By(K) C U ~ D : ( w ,  p). 
r+2K>s>r 

By the K-condition there exists s E (r, r + 2K) and a Borel set U c w~D~(w, p) 

such that  m~(U) >_ K -1 and m,8+u(r,8+"U) _> (1 + K-1)m~(U) for some u E 

(0, K]. By (2.8), m~(w;U) > K - l e  -2KCO) and, clearly, m~(D~(w, p)) = 2p < 

4K. Thus if E = r - lExp- lD~(w,  p) and E~, = s - l E x p ] l U  then 

(2.31) 
dr+2K(Trr+2Kzz , x , ~'~+2KV) = ./=A,(r + 2K,~)d~ 

?- ?. 

= m~(D~(w, p))(1 + m~(D~(w, p 

1 -3~ 2Kc(1)~ _> d~(z ,v ) ( l+  ~ K  ~- j. 

This, clearly, implies an exponentially fast divergence of geodesics and, by 

Proposition 2.1, yields the hyperbolicity of M. II 

Note that the K-condition is weaker then the hyperbolicity assumption. The 

K-condition represents a certain growth condition on surface areas of geodesic 

spheres in M. It may hold true even when M contains flat planes. For instance, 

the K-condition always holds true if M is the universal cover of a compact rank 

1 manifold of nonpositive curvature (see Lemma 2.1 in [BK]). 
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The following result provides a sufficient condition in terms of the curvature 

for the K-condition to hold true. 

2.11. LEMMA: Let M be a generalized CH-manifold with the Ricci curvature 

bounded from below. Suppose that there exists L > 0 such that for any x, y E M 

one can pick up r, s > O, s <_ L, and a Bore1 set U C S~(r) M Bu(L ) satisfying 

(2.32) f 
r - 4 - s  

m;(U)  > L -1 and p.y¢(t)(~/~(t))dt < - L  -1 
J r  

provided ~ = r- lExp~-lz  and z C U where Pv(() denotes the Ricci curvature in 

the direction ( E S , M .  Then the K-condition holds true with some K = K ( L ) > 

0 specified in the proof. 

Proof." Recall that Q~(t , ( )  = trUe(t , ( )  where U~(t,() is the operator of the 

second fundamental form of S=(t) at v = (t, () which satisfies the matrix Riccati 

equation (see [Ch], p.72), 

(2.33) + 2 + = 0 

where R~(t, ~) = ~-t-lR~(t, ~)rt, R~(t,~) is the curvature operator, and Tp is the 

parallel translation along 7e. The operator Ux(t,~) is self-adjoint and the "no 

focal points" assumption implies that U~(t, ~) is positive definite for all t > 0 and 

E S=M since all spheres are convex. Then (trUe(t, ~))2 > tr(U~(t, ())~ and, 

since trR=(t, ~) = P-r,(t)(';/~(t)), one derives from (2.5), (2.32) and (2.33) that 

f+L [r+L 
(2.34) Qx(r + L, ~) = Q~(r, ~) - tr(U=(t, ~))2dt - p.ye(t)(~/¢(t)) 

JT" ~'T 

r + L  >_ L - 1  -  ))2dt 

provided Exp~(r~) E U. It follows that for any such ~ there exists t = t(~) E 

[r, r + L] such that 

(2.35) Q~(t, ~) > 1L-X(v/-5 - 1) ~fa(L) .  
L 

On the other hand, by the Cauchy-Schwarz inequality 

tr(U=(t,~))2_> ( t rUx( t ,~ ) )2 (n -1 )  -1. 
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Thus if pv(() _> - k 2 ( n  - 1) for all v E M and ( E S , M ,  then taking trace in 

both parts of (2.33) one concludes by (2.6) that for all t _> r - 1, 

0 
(2.36) ~ Q ~ ( t , ~ )  <_ k2(n - 1) + (Q~(t,~))2(n - 1) -1 

~ k2(n - 1) + (C(r - 1))2(n - 1) -1 d--e---fb(r - 1). 

Without loss of generality I can assume that  r >_ 2, since if d(x, y) < L + 2 then 

pick up 9 E S~(L + 2) and take r, s, U C_ S~(r) as in the statement of Lemma 

2.10 for the pair x,/) in place of x ,y .  Then U C By(3L + 3). Now (2.4), (2.35) 

and (2.36) with r _> 2 yield 

/r~ 
-L 

log(A,(r + L, ~)(A~(r - 1, ~ ) ) - 1 )  = q , ( t ,  ~)dt 
J r - - 1  (2.37) 

> a(L) min(a(L)/b(1),  1) d--efc(L). 
- -  2 

Thus 

(2.38) m~+L(~r:+L(u)) ~__ ec(L)mrx-l('ffr-lu) 

and the K-condition follows with K = max(3L + 3, (e c(L) - 1) -1, LeC(1)). I 

2.12. Remark: After preparing the first draft of this paper I was informed by 

D. Elworthy that  S. Kotani suggested recently another condition which enables 

him to prove the positivity of the bottom of the spectrum of - A .  I thank 

S. Kotani who sent me the precise statement of his result. He assumes that M is 

a generalized CH-manifold with p~(~) _~ 0 for all x E M and ~ E T~:M and that 

there exist x E M and T > 0 such that 

f 
t + r  

(2.39) a(x, T) = inf (-pTds)(;y~(s)))ds > O. 
~ETxM,t>_O j t 

Then he shows that Q~(r,~) >__ ko(T) = (T + ((~(x, T ) ) - I )  -1 and, by standard 

comparison theorems (see [IW]), it follows that the bottom of the spectrum of 
1 - A  is not less than ~(k0(T)) 2. It is clear that (2.39) is substantially stronger 

than the assumption of Lemma 2.11, since the former does not allow an infinite 

geodesic staying entirely in a flat region though the latter includes many such 

cases. Also, the proof of Theorem A in Section 3 under the K-condition is more 

complicated because in this case one does not have a positive uniform lower 

bound for Q~(r, ~). I 
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2.13. COROLLARY: Let M be a CH-manifold with Ricci curvature bounded 

from below. Suppose that there exists 6 > 0 such that for any z • M the ball 

Bz(5 -1) contains a Borel set Gz such that m(G~) >_ 6 and, for any v • G~ and 

¢ • S , M ,  p~(¢) <_ -6 .  Then the assumption of Lemma 2.11 holds true with 

some L = L(6) > 0 and so the K-condition is satisfied. 

Proof: Pick up x, y • M arbitrarily. Choose w • S~(6 -1) so that y • "7~ if 

y • B~(8 -1) and w = y i f y  ~ B~(6-1). I f r  = d(x ,w)  set ( = r- lExp~-lw and 

z = Exp~(r + 8-1)¢. Since M has nonpositive curvature, then by comparison 

with the Euclidean space one concludes that 

W = U 7rxsDr (w' 6-1) 
r+28-1>s>r  

is contained in the cone C~(¢, 1). By (2.14) and the triangle inequality it follows 

that 

(2.40) By(48 -1) D W D Bz(6 -1) D Gz. 

Set V = D~(w, 6-1), F. = r- lExp~-lV, and p. = supies .  M p~((). By (2.4) and 

(2.6) for any t > r > 6 -1, 

(2.41) A~(t, ( ) /A~(r ,  ()  <_ e (t-~)c(e-'). 

Since Pv < 0 for all v, then by (2.40) and (2.41), 

fW f f r+28-1  
- 8  2 > pvdm(v) >_ e -2~-'c('5-') J~ A~(r,~)d~ J~ p~¢(t)dt 

= c I a(v)dmrx(v) 
Jy  

where c e -2~-1C(~-1) and a(v) f "+2~-1 = = ~ p~(t)dt with ~ = r-lExp~-lv.  

Suppose that a(v) >_ -28-1k2(n  - 1), then taking 

u = {v • v :  a(v) < 

one obtains 

-82c-1  = .fz a(v)dm~(v) 

- ~ 6 2 c - 1 ( k I / ( 6 - 1 ) ) - 1 m r ( y  \ U)  - 26--1k2(n -- 1)/12~(V), 
z 
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and so, by (2.17), 

m~(V) > (4k2(n -  1)C)--1~ 3, 

implying the assumption of Lemma 2.11. | 

The following result is a crucial consequence of the K-condition. 

2.14. LEMMA: Let M be a generalized n-dimensional CH-manifold satisfying 

the K-condition with the Ricci curvature bounded from below by -k~(n - 1). 

Then one can pick up L = L(K, k) > 0 such that, for any x, y E M, there exists 

a Borel set G C By(L) satisfying 

(2.42) m(G) > L -1 and Q~(r,~) >_ L -1 for a11(r,~) C G, 

where m is the Lebesque measure generated by the Riemannian volume on M. 

Proo~ Let x,y  E M. If d(x,y) >_ K +  1, then take r,s ,U C S~(r) as in the 

K-condition for the pair x, y. Since U C By(K) then, necessarily, r >_ 1. If 

d(x,y) < K + 1, then pick up ~ E S~(K + 1) and take r ,s ,U C S~(r) as in the 

K-condition for the pair x, Y. Then, again r :> 1, and since By(3K + 2) D B~(K) 

it follows that  in both cases 

(2.43) By(4K + 2) C G = U r~(U). 
r~_t~_r-[-S 

Set E -- r - l E x p ~ l U  C S~M. Then by (2.4) and (2.22), 

(2.44) r+s [ mx (~r~ (U)) = A~(r + s,~)4~ 
J ~  

f fr+s 
= J ( e x p  J~ Q~(o,~)do)A~(r,~)d~ 

= exp Q~(p, ((z))dp)dm;(z) 
,J'r 

>_ (1 + g-1)m;(V) 

where ((z) = r-lExp21z, z E U C S~(r). Set 

1 Qx(p,((z))ap>_log(l+ 
,~,.p 

Since r _> 1, then by (2.5) and (2.6) for all p _> r, 

(2.45) 0 < Qx(p,~) <_ C = k coth(k), 
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/veXp(~+SQ~(p,~(z) )dp)dm~(z)  

<_ eCsmr(U CI If+) + (1 + 1g-1)mr(U C] V_). 
Z 

By (2.44)-(2.46), 

(2.47) e C8 > 1 + K -I, 

and 

397 

(2.48) 

i.e. s>_C - l l o g ( l + K  -1) 

m~(U n V+) >_ ~K-le-°'mr~(U). 

IK-I)I For z E V+ set T+(z) = {t E [r,r + s] : Qx(t,~(z)) >_ ~log(1 + ~ , and 

T_(z) = [r,r + s] \ T+(z). Then in the same way as above by (2.45), (2.47) and 

the definition of V+ for any z E V+, 

(2.49) mes(T+(z)) > 1C-1 log(1 + ~K -1) 

where rues denotes the Lebesgue measure on real numbers. Set 

{ 1 ( 1 ) }  G= (p,~)EG:Q~(p,~)>~-glog 1+ g - '  i 

Since s _< K and m:(U) >_ K -1 then, by (2.47)-(2.49), 

(2.50) m(G) - 4  > 1C-1K-~e-CKl°g(1 + ~ K- l )  ~f~" 

This yields Lemma 2.14 with L = max(3K + 2, ~-1, KCI-I) .  | 

2.15. PROPOSITION: Let M be a generalized CH-manifold with the Ricci 
curvature bounded from below and v(r) be as in (1.3). If 

(2.51) lim inf v(t)(tk~(t) ) -1 = c~ 
t ---*OO 

where @ ( t )satisfies the right hand side of(2.17), then M satisfies the K-condition. 

Proof'. Pick up x, y E M arbitrarily. Fix L _> 1 large enough; it will be specified 

in the proof. If d(x, y) >_ L put z = y and, if d(x, y) < L, choose z E Sx(L) so 
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tha t  y belongs to the geodesic segment  7~z. Let r -- d(x, z) and ~ =- r - l E x p ~ l z .  

Set U = B~(z, L); then by (2.14) and the tr iangle inequality 

v = [_J D By(L) 
rA-2L>t>r 

where v = Exp~( r  + L)~. I t  follows from (2.4) and (2.5) tha t  

t t 
_ 

for any t < r + 2L, and so 

2Lm~+2L(~r~+2Lu) >_ m ( V )  >_ m ( B , ( L ) )  > v(L) >__ v(L)(~2(L))- lm~(U).  

Choose L = sup{t  _> 1 : v( t ) ( t~( t ) )  -1 <_ 4}; then the K-condi t ion  will be satisfied 

with K = 2L. | 

2.16. PROPOSITION: Suppose that M / s  a generalized CH-manifold (/n fact, any  

complete noncompact Riemannian  manifold) and, for some N >__ 0, 

(2.52) l i m i n f r - N v ( r )  < 0o. 

Then the top A of the L2-spectrum of A is equal to zero. 

Proof." I employ  the inequali ty (3.1) from ICY] which gives 

m(B~(r))  
(2.53) 0 < - A  < 

- (r - p)2m(Bz(p))  

for a n y x C M a n d r > p > O .  Set 

a = sup {/3; l i m ~ f  r~v(r)  < 0o } .  

By (2.52), a _> - N ,  and so for any ¢ > 0, 

(2.54) l i m i n f r ~ - % ( r )  = 0 and ! iminfr~+%(r)  = c¢ = l im ra+%(r).  
?" - - -~OO 7 " - - - * ~  ?" ---* OO 

Then  there exist sequences xk E M and rk --+ oo as k ~ oc such tha t  for all 

k large enough, m(B~k(rk))  < - - ~ + ~  Taking in (2.53) x = xk, r = rk, and _ _  1 k 

p = ½rk one obtains  by (2.53) and (2.54,) tha t ,  for 0 < E _< 1, 

/ t  1 r ~ + ~ v  [1 r " , ~ - 1 2 2 - a - E - 2 e - 2  4 m ( B ~ ( r k ) )  < ~ k) ~-~ k)) % ~ 0 
0 < - A  < r2m(B**(1/2rk) ) _ 

as k ~ oc. | 
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2.17. COROLLARY: Let M be a 2-dimensional generalized CH-manifold with 

the Ricci curvature bounded from below. Then the K-condition is equivalent to 

(1.3). 

Proof" The K-condition implies (1.3) by Proposition 2.9. If dim M = 2 then 

D~(y, p) is 1-dimensional, and so m~(D~(y,p)) <_ 2p, Thus one can take @(t) = 

2t in (2.17) which, together with (1.3), yields (2.51), and so the K-condition 

holds true. | 

2.18. Proof of Assertion: If (1.3) is satisfied, then the K-condition holds true 

and we will see in the next section that this implies the positivity of -A. On the 

other hand, if 

liminf r-lv(r) < oc 
r - - +  o o  

then ~ = 0  by Proposition 2.16. | 

2.19. Remark: Propositions 2.15 and 2.16 say that if volumes of the disks 

D~ (y, p) grow in p not faster than polynomially, then either volumes of the balls 

B~(r) grow faster than polynomially and then ~ < 0, or they grow polynomially 

and then ~ = 0. The class of generalized CH-manifolds for which volumes of the 

disks D~(y, p) grow not faster than polynomially in p includes symmetric spaces, 

but I do not know a general characterization of this class. In fact, in order to get 

< 0 one needs only the K-condition with one fixed pole x, and so it suffices 

to have that  volumes of the disks D~(y, p) grow polynomially in p only for one 

fixed pole x. | 

2.20. Remark: In fact, $ < 0 follows already if (3.2) below is satisfied for one 

fixed x. Thus in order to have A < 0 it suffices to have the K-condition for one 

fixed x only and, correspondingly, the disks D~(y, p) should grow not faster than 

polynomially in p only for one fixed x (though the volumes of balls B~(r) should 

grow exponentially fast for all x). II 

3. Heat kernel and the radial part of  the Brownian motion 

Recall that the Brownian motion X(t) on M is a diffusion process generated by 

the Laplace-Beltrami operator A (see [IW] and [Ch]) and the heat kernel p(t, x, y) 

is the transition density of X(t),  i.e. if P( t ,  x, F), F C M is the probability of the 

event {X(t) E F} provided X(0) -- x, then 

p(t,x,r)  = [ p(t,x,y)dm(y) < 1. (3.1) 
J r  
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Throughout this section I assume that M is a n-dimensional generalized CH- 

manifold satisfying the K-condition with the Ricci curvature bounded from below 

by - k 2 ( n -  1). Actually, I shall need here only the property expressed by Lemma 

2.14 that Q,  is bounded away from zero on a "well spread" set. In the geodesic 

polar coordinates with a pole at x one can write X(t)  = (R~(t), E~(t)), where 

E~(t) • SxM is the "angular" part of the Brownian motion X(t)  and R~(t) = 

d(x, Z(t))  is the "radial" part of X(t), so that X(t)  = Exp~(R~(t)E~(t)). 

3.1. PROPOSITION: There exists a • (0, 1) such that for any x, y • M and all 

t>O, 

(3.2) Py{as < Rx(s) - Rz(O) < ct-ls for all s > t} > 1 - ct-le -~t, 

where Py {- } denotes the probability of the event in brackets for the process X (t) 

starting at y. 

Proof." Since the Laplace-Beltrami operator A has the form (2.3) in geodesic 

polar coordinates, the radial part R,(t)  of X(t)  satisfies the following stochastic 

equation: 

(3.3) fo 
t 

R,( t )  = R,(0)  + v~w(t)  + Q,(X(s))ds, 

where w(t) is the one-dimensional Brownian motion (called the Wiener process) 

starting at zero. Let L = L(K, k) > 0 and G = G,.y C By(L) be the constant 

and the set satisfying (2.42). By the heat kernel comparison theorems (see [IW] 

or [Ch]), p(t, y, z) is not less than the heat kernel qk(t, v, W) on the n-dimensional 

space of constant curvature - k  2 where v, w are any points with the distance 

between them equal to d(y, z). It follows that there exists b --- b(k, L) > 0 such 

that, for.any y E M, 

(3.4) inf inf p(t ,y,z)  > b. 
½<t<l zEB~(L) 

Set gdx,y = f l  Xv,,v (X(t))dt where Xa(X) = 1 if x e G and Xv(X) = 0 if x ¢~ G. 

Then by (2.42) and (3.4), 

(3.5) Ey~x,y = Py{X(t) e G}dt >_ dt p(t,y, z)dm(z) >_ bn -1, 
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where Ey is the expectation for the process X(t)  provided X(0) = y. Introduce 

the events A+,y = {ffgx,u >_ lbL-1} and A'~, u = a \ A +~,y where f~ is the path 

space of the Brownian motion, X(t ,  w) = oJ(t), ~ : [0, co) --. M is continuous. 

Since @x,y < 1, then by (3.5) in the same way as in (2.48), 

(3.6) Py{m+,y} >_ 4bL - ' .  

Let Os : ~ __. ~ be the shift operator so that (t~s~)(t) = wit + s). Then 

8~A+,x(o) = {08@~,x(o)> lbL-1} where 

11 O ~ , x ( o )  = xa~,~( . )  ( X ( t  + s ) )d t .  

By (2.5), (2.42) and (3.3) 

// R~(t) :> R:~(O) -t- v~w(t)  -t- ~ O~:(X(s))ds 
l<_j<t -1 

(3.7) >_ R~(0) + v~w(t) + L -~ ~ 0s~,~(0) 
O~j~_t-1 

> R~(O) + V~w(t) + 4bL-2N~ 

where Nt = )-~o<j<t-l_ _ XOJA+x(o), and XA = 1 if the event A occurs and )~A = 0, 

otherwise. Let C~ . 0 < j l  < J2" '"  ( j~ <~ t - 1 be the event that  all 
J l ~ . . . ~ J t '  - -  

OJ~A+,x(o), i = 1 , . . . , g  occur and, i f j  ~ ji, i -- 1 , . . . , g  and 0 _( j _~ t -  1, then 

8JA-~,x(o) occurs, i.e. 

~ ..... J~ I ~ ~ x,x(o) I n O~A2,x(o) . 
\o<i<J ] 

By (3.6) and the Markov property (see [IW] or [KS]) of the Brownian motion 

x(t), 

(3.8) Pu{ jl ..... j ,} ~- EyXAIEx(1)XolA2 "Ex(ft-1])Xo~*-'lAit-lj 

< (1 -- lbL-l~[t]-e-1 
- 4 ] ' 

where [.] denotes the integral part, Aj, = A+,x(o) for all i = 1 . . . .  , e and Aj -- 
A-~,x(o) i f j  ~ jl  for any i. Since by (2.42), (3.1) and (3.4), bL -1 < 1, the above 
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inequality makes sense. Thus by the Stirling formula 

Pu{Nt <- /3t} = E E t ~ l  ,...,jt 
o<_e<_Zt O< j l  <J2 ...<Jr<_ t -1  

E ([$] ~-1) (1--  l b n - a )  [t]-e-1 

(3.9) o<e<Z 

--< ~t(t--1)~t ( 1 -  ~bL-1) 

_< 

provided 0 < ~ < ½ and t _> 2~ -1. Therefore if /3 is so small that 

(6~-1)~(1 - ¼b]_,-1) 1-¢~ < (1 - lbL-l'~ then one can choose C > 0 such that 
- -  5 :' 

(3.10) Py{Nt < ~t} < C(1 - ~bL-1) t. 

Now by (3.7) and (3.10), 

(3.11) 
Py{R~(s) - Rx(O) < lbL-2~s for some s > t} 

<- Pu{ inf (Rx(s) - R~(0)) _< lbL-213(m + 1) for some m > t - 1} 
m<s<_m+l 

< E Pu{¼ bL-2Nm + v~ inf w(s) < lbL-2/~(m + 1)} 
m<s<_m+l 

m > t - I  

< E (Pu{Nm </3m} + P{ inf w(s) < -~bL-2 /3 (m,  1)}). -- -- 0<s<rn+l -- 
re>t--1 

Since w(s) and -w(s) have the same distribution then by the reflection principle 

(see [KS]) for any u, p > 0, 

(3.12) P{oinf w(s) < -p} = P{ sup w(s) > p} = 2P{w(u) > p} 
_ - O < _ s < _ u  

,/~_[oo 2Ue_P,/2 u = e-V2/2Udv <_ - -  . 
v ~ y p  p 

Now from (3.10)-(3.12) it follows that for some a > 0, 

1 _ - 1  - a t  (3.13) Py(Rx(s) - Rx(O) <_ as for some s > t} < ~c~ e . 

Set vx(r) = inf(t _ 0 : X(t) E S~(r)}, i.e. v~(r) is the first hitting time by 

X(t) of the geodesic sphere S~(r). To complete the proof of Proposition 3.1, I 

need the following result which will be employed also in Section 4. 
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3.2. LEMMA: Let  oo > r3 > r2 > rl  > O, x E M ,  ~ E S x M ,  and y = Expx(r2~ ). 

Then 

(3.14) e -c(r~)(r~-r') -- (e c(r')(r3-rl) -- 1) -1 < Py{Tz(r3) > "rx(rl)} 
1 cg < 2 ~ -  e x p ( - ~ ( ~  - ~)) 

where C(r )  = kco th (k r )  and a > 0 satis/]es (3.13). Furthermore,  for 

t >_ a - l ( r 3  - r~) ,  

(3.15) Py{r~(r3) > t} < oz-le -a t ,  

where a > 0 satis/Jes (3.13). 

Proof: Since R~(0) = r2, then by (2.5) and (3.3), R~(t)  - r2 >__ x/~w(t) ,  and so 

by the reflection principle (3.12), 

(3.16) 

Py{vx(rl) < l(r2 - rl)} -- Pu{ inf  (Rx ( s )  - r2) < rl  - r2} 

< P{ inf w(s)  < - ~ ( r l  - r:)} < v~e  -½(~2-~'). 
- s _ < ½ ( ~ 2 - ~ 1 )  - 

On the other hand, by (3.13), 

c~ 1 
R~(t)  - Rx(O) >_ ~-(r2 - r l)  for all t >_ ~ ( r  2 -- rl) ,  

r with Py-probability of at least 1 - a -1 e x p ( - ~ (  2 - rl)) ,  and so 

(3.17) { 1 } O~ -1 (--~(r2 rl)), Py ~ > Tz(rl) >_ ~ ( r 2  -- r l )  _< exp  a _ 

which, together with (3.16), yields the right hand side of (3.14). The left hand 

side of (3.14), which I will need only in Section 5, follows in the same way as in 

Lemma 3.1 from [Ki] by the comparison 

(3.18) Rz(t) - Rz(O) <_ V/2w(Q -1- C ( r l ) t  if t < Tx(rl) a n d  R~(0)  > r l  

satisfied in view of (2.6) and (3.3). Next, by (3.13) for at  > r3 - r2, 

(3.19) 
Py{'r(r3) > t} < P y { R = ( t )  - R=(0) < r3 - r2} 

< PAR=(t )  - n=(o) < at} < ~ - l c - " t ,  
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proving (3.15). 1 

Next, I am able to conclude the proof of Proposition 3.1. By (3.12) and (3.18), 

for any rl,  s > 0, r2 > rl, r3 > r2 + C(rl)s, and z 6 Sx(r2), 

Pz{~(r3)  < s ^ ~ ( r l ) }  < e { v ~  sup w(u)  > r3 - ~2 - C ( r l ) s }  
(3.20) o<~<8 

< 2 v %  e x p ( - ( ~ 3  - ~ - c(~l)s)~/4s), 

where a ^ b = min(a, b). 

Set d = d(x, y) and C = C(1); then ~-~(Cg + d) < r~(3C£ + d) if X(0) = y, and 

so by the strong Markov property (see [IW] of [KS]) of the process X(t), 

Pu{R~(s) - Rx(0) > 3Cs for some s > t} 

-< E PY{ sup R~(s)>_3Ce+d} 
e.>_t-1 t<s<~+l 

<- E Py{r~(3Ce+d)<_e+X} 
(3.21) e>_t-1 

<- E EuPx('.(ce+a)){rz(3Ce +d) <- ~ + 1} 
~ > t - 1  

-< E sup Pz{~'~(ZCe + d) _< e + 1}. 
£>_t-1 z6S~ (C~+d) 

To estimate the last probability in (3.21) I employ the inequality 

(3.22) Pz{T(r3) < s} <_ Pz{T(r3) < s A Tx(rl)} + Pz{'r(r3) > vx(rl)} 

wi th rx  = 1, r2 = C a + d ,  ra = 3 C a + d ,  z 6 S~(r2), and s = ~ + 1 .  Next, I 

estimate the first probability in the right hand side of (3.22) by (3.20) and the 

second probability there by (3.14), which together with (3.21) yields 

1 - 1  - ,~t (3.23) Pu{Rx(s) - Rx(O) >_ a- i s  for some s > t} < ~ a  e 

provided (~ is small enough. Finally, (3.13) and (3.23) imply (3.2). | 

3.3. COROLLARY: For any x, y 6 M with Pu-probability one, 

(3.24) c~ < liminf ~d(x, X(t)) < limsup ld(x, X(t)) < c~ -1" 
- -  t ---~ o ¢  - -  t - - *  c ¢  t - -  

Proof: The assertion follows from (3.2) and the Borel-Cantelli lemma. | 
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3.4. Proof of Theorem A: I employ upper bounds for the heat kernel from 

[CGT], p. 27 which in our circumstances amount to the following estimates: 

(3.25) p(t,z,y) < C(t,5) 

= ~ max(t-n/2 + ~-n, (t1-,~/2 + 2~-(n+2))(t-l-,~/2 + 5-(,~+2))) 

for all 5, t > 0, any x, y E M, and some C independent of 5, t, x. If d(x, y) >_ 25, 

then one has a better estimate: 

(3.26) p(t, x, y) < C(t, 5) e x p ( - l ( d ( x ,  y) - -  25)2t-1). 

Next, if d(x, y) + at~4 _> 2, then by (3.2), (3.25), (3.26) and by the semigroup 

property of the heat kernel 

(3.27) 

~ :a( z,u ) >_d(~,U ) +~t / 4 

<C(2,1)~-le-at/2-t-C(2, l) exp(-¼(d(x,y)-t-atl4-2)2t-1 ) 
taking into account that Ry(0) = d(x,y) provided X(0) = x. Finally, (1.2) 

follows from (3.25)-(3.27) provided d(x, y) + at~4 _> 2 and (1.2) follows from 

(3.25) if 0 _< d(x, y) + at~4 < 2, t > 0. Since 

(3.28) etA f(x)  = iM p(t, X, y)f(t)dm(y), 

then by (1.2) the spectral radius of the operator e A does not exceed e -c. Thus 

the supremum of the spectrum of the self-adjoint extension of A to L2(M, m) 
does not exceed -c .  | 
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3.5. Remark:  Looking carefully at the proofs in Sections 1 and 2 one can give 

a positive lower bound for the constant C in (1.2) in terms of three geometric 

quantities: the dimension n, the lower bound on the Ricci curvature - k 2 ( n -  1), 

and either K from the K-condition or one of parameters characterizing hyper- 

bolicity of M (such as C in C-exponentially fast divergence of geodesics, 5, if all 

geodesic triangles are 5-thin, etc.). | 

3.6. LEMMA: There exists/3 > 0 such that, t'or any x C M and all t > O, 

(3 .29)  P~{T~(1) ~ t} ~ f l - 1  exp(_/3t-1). 

Proo~ Set C = C(1/2) then by (3.12), (2.19) and the strong Markov property 

of the process X(t),  

(3.30) 

P~{T~(1) _< t} <__ E~Px(~(a/4)){T~(1/2)  A T~(1) _< t} 

_< sup P,{T~(1/2)  A T~(1) _< t) 
z E S t : ( 3 ~ 4 )  

< P { v ~  sup w(s)  > 1 _ Ct}  
-- O<s<t -- ~ 

< 2V~t(~ - Ct) -1 e x p ( - ( ~  - Ct)2/4 t )  

provided t < (4C) -1. This gives (3.29) if fl is chosen small enough. | 

4. H a r m o n i c  m e a s u r e s  a n d  t h e  " a n g u l a r "  p a r t  of  t h e  B r o w n i a n  m o t i o n  

Throughout this and the next section I assume that M is a hyperbolic 

n-dimensional generalized CH-manifold with the Ricci curvature bounded from 

below by - k 2 ( n  - 1). 

4.1. LEMMA (cf. [KL] and [BK]): There exists c > 0 such that, if oc > r3 > 

r2 > rl  _> ro > 1, x E M, y E S~(r2), and 

(4.1) 
rO rO r O - -  tx = t z (p ; ro , r l )  = i n f { d ~ l - l ( z , v )  : z , v  E Sx(rl) and d~ (Tr~ (z ) ,% (v)) > p}l/2 

then 

(4.2) 
- def r0 ro Qy(x; ro, rl ,  r3; p) = Py{ sup d x (~r~ X ( s ) ,  ~r;°y) > p} 

0<s<rz (~1)^r~ (r3) 
--1-2 --ct~ < ^ > + e 
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for any p > 0 such that t~ >_ 1. 

Proof: Clearly, 

(4.3) Qy(x;ro, rl,r3;p) <_ Py{T~(rl) A ~'~(r3) > t~} + Qy, 

where 

~rO TO 'r'O -- -- / Q,y : By sup d~ (~r~ X(t), ~ y) > p and Tx(rl) A Tx(r3) < t~ . 
(0_<t<~(~l)^~(~) 

The event in the last probability can occur only if the Brownian motion X(t) 

will cover a distance of at least t~ in time not exceeding t~ in the following sense. 

Let l = It 2] and define the random points y~, i = 0 , . . . ,  g -  1 inductively Y0 = Y, 

Yi+l = X ( T 9 , ( 1 ) ) .  T h e n  

(4.4) t~ _> E ~-y~(1). 
e - l ~ i ~ O  

Hence Ty~ (1) < tx~ -1 for some i = 0 , . . . ,  ~ -  1 which, together with the strong 

Markov property, enables one to conclude that 

(4.5) (~y _< g sup Pz{v~(1) _< t~t-1}. 
zEM 

Finally, (4.2) follows from (3.29), (4.3) and (4.5). | 

The following result is the key step in the proof of Theorem B (cf. Lemma 3.1 

in [KL] and Proposition 4.3 in [BK]). 

4.2. PROPOSITION: There exists a > 0 such that for any x E M, all r2 ~ rl >_ 

p > a -1, and each z E S~(r2), 

(4.6) Pz ~supd;l(Tr;'X(t),Irr~ lz) <<- P} >_ 1 - a - l p  -ae-a(r'-~). 
( t>o 

Proof: First, I derive (4.6) for rl  = r2. Since M is a hyperbolic manifold there 

exists C > 0 such that  (2.2) holds true. Assume that  a - 1  ~ 12C + 1 so that 

p _> 12C+ 1, as well, and notice that  if yl,y2 E S~(r), d~(yl,Y2) >_ 3C then (2.2) 

gives 

(4.7) u~'~+~'/-~+~'~'~,,~ yl, 7C+~'~ y2; ~ > 2a~(Yl, Y2) for all u _> C 2 + 3C. 
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Set re(j) = rl + e ( j -  1 ) logp+  ½j( j -  1)(C 2 + 3 C )  for ally = 0 ,1 ,2 , . . .  where 

is chosen to satisfy 

(4.8) 0 < e _< log (pa/44)(4k(logp)cothk) -1. 

Define g~(z) --= {y • Sx( r l ) :  d~(y,z) ~_ p/4}, 01(z ) = "fixre(O)'~e'gliZ)," and O+(z) = 
7r~ ~ltz}. Fhrthermore, for j = 1, 2 , . . .  I define by induction 

O~+l(z ) = {y • S~(re(j)) : d)(i)(y,e;(z)) <_ 2J-30}, 

and O++,(z) = r~(J+2)O~-+l(Z ). e;+~(z) = ~; ,(J+'o;+~(z)  

Set also for j = 1, 2 , . . . ,  

D;(z) = U ~r:O~(z) 
rc(j-1)(u(r~(j+l) 

and O](z) = OD~(z) \(O+(z) U O~(z)), where OU denotes the boundary of a set 

U. The picture here is similar to Figure 3.1 from [KL] but parameters of the 

construction are different. We remark that in view of (4.7), 

(4.9) 7r~1 ( U  D~(z)I c {y E S~(rl) : cF~l(y,z) <_ p}. 
V>_I / 

Let Tj = inf{t _> 0 : X(t) ~ D;(z)} be the first exit time of the Brownian motion 

X(t) from D~(z). Then for any y • c9+_1(z ) if j > 1 and for y : z if j = 1, it 

follows that 

(4.1o) 

By (3.14), 

(4.11) 

Py{X(Tj )  q[ 0+(z)} <Py{T~(re(j  + 1)) > T~(re(j -- 1))} 

+ PAX(rj) • O;(z)}. 

sup Pu{r~(r~(j + 1)) > T~(re(j -- 1))} 

By (2.9), (2.14) and (4.8), 

(4.12) O{(z) D {y e S=(re(0)): d~'(°)(y, Tr~'(°)z) < pl/4}, 
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and so 

(4.13) Pz{X(T1) 6 0~(z)} _~ Qz(x;r~(O),r~(O),rE(2),p 1/4) 

with Qz defined by (4.2). Fhrthermore, by (2.14) and the definition of D~(z) for 

any y E O+_l, j = 2,3,. . . ,  

(4.14) Py{X(Tj) 6 0](z)} < Qy(x; r~(j - 1), r~(j - 1), re(j + 1), 2J-3p). 

Next, I remark that by (3.15) for any y 6 S~(r~(n)), j = 1, 2,. . . ,  

Py{T~(r~(j -- 1)) A r~(r~(j + 1)) _> t (j)} 
(4.15) 

<_ Py{Tx(r~(j + 1)) _> t (j) } _< Ot - 1  e x p ( - a t ~  )) 

provided 

(4.16) t~ ) _> a - l ( e  logp + j (C 2 + 3C)). 

Taking t(~ ) = pl/S, t(J) = 2(J-3)/2pl/2 for j = 2, 3, . . . ,  and choosing a > 0 so 

small that (4.16) holds true for any p > a -1, one derives by (4.1) and (4.10)- 

(4.15) that for all j _> 1, 

(4.17) Py{X(w5) • 0+(z)} < c-~lp-Cle -c'j 

for some constant cl > 0 independent of z, y 6 M provided y = z if j = 1 and 

y 60+_l(z) i f j  > 1. 

By (4.9), (4.17) and the strong Markov property of the process X(t) for z E 

S~(ra), it follows that 

Pz {sup ~1 (r~l X(t), z) < p} 
t>0 

>- E.Xx(n)eo+(z)Ex(n)Xx(~2)eo+(~) . . .  
(4.18) 

>_ 1 - Pz{X(Wl) ¢ O+(z)} - ~ sup Pu{X(rj) qt O+(z)} 

_> 1 - cl2p -ca , 

implying (4.6) for r l  = r2. Now let r2 > rl.  Then employing (4.18) for r2 in 

place of r l  and z 6 S=(r2), one obtains by (2.2), 

P~{sup<aQr:aX(t),Tr;~z) <_ p} 
t>O 

(4.19) >-P~ [,(sup~'(Tr:'X(t)'z)-t>° < ( ~ ) c  ( 4 ) c - l ( , , - n )  P} 

>_ 1 - c~ 2 p -~  
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yielding (4.6) for a small enough. I 

4.3. COROLLARY: For any ~ > 0, 5 < 2 set 

r.(5) = max(a -1, qz 1 ((2cza arcsin(5/2)) -1)) 

where c~, q~ are the same as in Lemma 2.3, q~-i is the inverse to the q~ function, 

and a is the same as in Proposition 4.2. Then for anyr  >_ r~(5) and z = Exp~(r~), 

~ E S ~ M ,  

(4.20) Pz ~fsup IIZ~(t)-~11 > 6~ < a-laae-a( (~)). 
kt>o ) 

Proo~ If ~, r /e  S~M then, by (2.13), 

(4.21) 
d~ 1 (Exp~(rl~), Exp~(ra~)) ___ c~q~(rl)Z~(~, ~?) 

= 2c~q~(rl)arcsin(l[~ - ~1[/2). 

Set rl  = r~(5). Since q~ is an increasing function then, by (4.21), 

d~ l (Exp. ( r l ( ) ,Exp~(r l~) )  > a -1 provided II~- rill > 6. 

Thus by (4.6) with p = a -1 and r2 = r, 

k t > o  k t > o  

~_ a-laae -a(r-r~(6)). I 

4.4. COROLLARY: For any x, y E M with Py-probability one, the limits 

(4.22) lim E~(t)  = l im E~(T~(r)) = E~(oc)  e S~M 
t -"~ O ~  ?" ---* O 0  

exist and are the same. 

Proof'. 

(4.23) 

By (4.20) and the strong Markov property of X(t) ,  

P y /  sup , [E~(s ) - -E~(r ( r ) ) , ,>5}  
L~_>.o(,-) 

<_ EyPx(r~(r)) ~sup IIZ~(s)- %(o)11 > 5} 
ks>_O 

_< sup Pz ~supli%(s)- r-XExp~lz[I > 5} 
zESt(r) t s > O  

< a-la%-'~( . . . .  (~)). 
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Taking 5 = 6j = j - 1  and r = rj = a - l ( j  + r=(j-1)) ,  one derives by the Borel-  

Cantelli lemma that  there exists a random number t = g(cv) such that  g < c~ 

Py-almost surely (a.s.) and 

(4.24) sup II%(s) - =(r=(rj))ll _< j -~  for all j > ~, 
s>_r=(r~) 

implying the convergence with probability one of E=(T=(r)) as r ~ c~ to a random 

vector E~(o~) • S~M. Next, by (3.15), 

Py{T=(r) < a - t ( r  -- d)} > 1 - a - l e  -( , -d)  

where d = d(x,y),  and so by (4.23) for any t > a - l ( r  - d), 

(4.25) P~{ l l%(t)  - ~=(~-~(r))ll > 5} _< c~-1~ -(~-~) + a-la% -~(r-~(~)). 

Choosing again 5 = 62 = j - 1  and r = rj = a - l ( j  + r=(j-1)), we conclude by the 

Borel-Cantelli lemma that there exists a random number g = e(w) so that  e < c~ 

Pv-a.s. and 

I I ' = = ( t )  - ~=(r=(rj))ll < j - ]  

provided t >_ a - l ( r j  - d )  and j _> ~. This yields the convergence with probability 

one of ~ ( t )  as t --+ o~ to the same random vector ~=(o~). II 

Remark that Corollary 3.3 together with Corollary 4.4 yield that with Py- 

probability one, X( t )  converges as t ~ c~ in the cone topology on M U S(c~) 

(see [Go2]) to a random point X(oo) • S(oo), so that X(ec)  = ¢=-==(o0) where 

#9= : S=M -~ S(c~) was defined in Introduction. Next, I define the harmonic 

measures on S(c~) for any Borel F C S(oo) by 

(4.26) P ( x , r )  = P={X(c~) • r )  = P={,I,~z(c~) • F} 

which, clearly, is independent of z E M. 

4.5. COROLLARY: Harmonic measures P(x; .) are positive on open subsets of  

s(~). 

Proof: By the heat kernel comparison theorems (see [IW] or [Ch]) p(t, x, z) is 

not less than the heat kernel on the n-dimensional space of constant curvature 

- k  2, in particular, p( t , x , z )  > 0. Let F be an open subset of S(c~), ( c F, 
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= ~11¢, and 4~=U C F where U = {~ e S=M : I1~ - ~11 _< 2~}. Take r > 0 so 

big that a-Iaae -a(,-1-,=(~)) < 1/2 and r >_ r=(/f) + 1. Then by (4.20) and the 

Markov property of X(t),  

P(x,r) > f p(t,x,y)Pv{sup IIE=(s) - ~I(Y)II <-- ~f} 
JB ,(1) ~>o 

> 2P={X(t) E B,(1)} > 0, 

where z = Exp=(r~) and ~?(y) = (d(x ,y))- lExp;ly .  | 

4 .6 .  COROLLARY: The formula 

= Is  f (¢ )P(x ,  de) (4.27) h f(=) (=)  

gives a one-to-one correspondence between continuous functions f on S(oc) and 

harmonic functions hÁ having a continuous extension f to S(oo), i.e., (4.27) solves 

the Dirichlet problem at infinity. 

Proof: Let Pt, t > 0 be the "heat" semigroup of operators given by 

(4.28) Ptg(x) = / M  p(t, x, y)g(y)dm(y) = E=g(X,). 

By (4.26) and the Markov property of X(t)  for any Borel F C S(oo), 

E=P(X(t), F) = P(x, r ) ,  

and so Pth I = hi, which implies that any h I given by (4.27) is harmonic. It 

follows from (4.20) that P(x, .) weakly converges as x ~ ~ E S(oo) to the atomic 

measure concentrated at 4. Thus 

for any continuous function f on S(oo), i.e., (4.27) defines a harmonic function 

on M which is continuous on M U S(oo). On the other hand, i f  h is a harmonic 

function on M which is continuous in the whole M U S(oo), then by the prob- 

abilistic representation of solutions of the Dirichlet problem in the ball B=(r), 

r > 0 (cf. [KS]), h(x) = E=h(X(r=(r)), and so by (4.22) and (4.26), 

h(x) = lim E=h(X(r~(r))) = E=h(X(oo)) = f h(~)P(x,d¢) 
~-~oo J s(oo) 
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completing the proof of Corollary 4.6. I 

The Hausdorff dimension of a set U C S(oc) corresponding to a pole x is given 

by 

Hd~(U)=inf{6>O:liminf~'~v~=O}_ o-~o "--'. 

(4.29) 

= s u p { 5 > 0 : l i m i n f ~ - ' ~ o ~ _  p--.0 , = ~ } '  

where the infimum inside the brackets is taken over all countable covers of U by 

the sets 

v~(~, ~ )  = c~(~, ~ )  n s ( ~ ) ,  ~ • S~M, o < ~ <_ p 

with the cones C(~, ~o~) defined before Lemma 2.6. The Hausdorff dimension of 

a probability measure p on S(c¢) is defined by 

(4.30) HD~(~t) = in f{Hd~(U):  U C S(o¢) and tt(U) = 1}. 

4.7. PROPOSITION: There exists a number a > 0 and a sequence of numbers 

C~ > 0 such that 

(4.31) P~{I}~(c¢, w) - ~11 -< ~ and w • ft (t)} _< Ct~ ~ 

for any x • M,  ~ • S~M, and ~o >_ 0 where ~(t)z , ~ = 1, 2,. .. is an increasing 

sequence of events such that P~(U g/(~ l)) = 1. 
t 

4.8. COROLLARY: Harmonic measures P(x ,  .) have no atoms and, for any x • 

M, 

(4.32) HD~(P(x ,  .)) > ,¢ 

where ,~ > 0 is the same as in Proposition 4.7. 

This corollary follows from Proposition 4.7 by the same argument as in 

Corollary 3.1 from [KL], and so we will need to establish only Proposition 4.7 

itself. For any x • M,  ~ • S~M, t > O, and p > 0, define 

Ut(x,~,p) = U{B~j(2p) :  0 < j < [t(2a -1 - a/2)p  -1] + 1} 

where a is the same as in (3.2), the balls B~j (2p) of radius 2p are centered at the 

points zj = Exp~((½at + jp)~), and [.] denotes the integral part. 
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4.9. LEMMA: For any 6 > 0 there exists t3 =/3(6) > 0 such that, [or all t > O, 

Px{X(t)  • Ut(x, E~(c~), t~)} 

(4.33) >_ P~{at <_ R~(t) <_ a - i t  and dn~(t)(x(t),Exp~(R~(t)E~(oo))) <_ t 6} 

> 1 - j3-1t -~. 

Proof." By (3.2) and (4.6) together with the Markov property of X(t),  it follows 

that the second probability in (4.33) is not less than (cf. (3.20) in [KL] and (4.21) 

in [BK])  

P~{at < Rz(t) <_ a - i t }  

x inf P~(dd(*'~)(z, Exp~(d(x, z)E~(c~))) _< (ad(x, z)) ~ } 
z~.B~(a-lt) \ B~(at) 

>(1 - a- le -a t ) (1  - a-l(a2t)  - ~ )  

provided 5 < 1 and (a2t) ~ > a -1. If 6 > 1, then the left hand side of (4.33) 

becomes only bigger. For t satisfying t < a-2a -1/6 we obtain (4.33) automati- 

cally by adjusting/3 =/3(5). | 

Next, I am able to complete the proof of Proposition 4.7 similarly to [KL]. Fix 

1 and take/3 = 3(1) as in Lemma 4.9. Put  tt = g2/~, then (4.33) together ~ = ~  

with the Borel-Cantelli lemma yield that, for P~-almost all w • 12, there exists 

g~(w) < c¢ measurably dependent on w such that 

(4.34) X ( t e ,  02) • Vtt (x ,  - 1/2 =(ec, w), t e ) for all g >_ g~(w). 

Set 12(e) = {w : g~(w) < g}, g = 1, 2 , . . . .  It follows from (2.9) that one can choose 

L > 0 so that, if ]1~ - ~/][ < e-Lt for ~,~7 • S~M, then 

(4.35) d(Exp~(2at~), Exp~(2atrl)) <_ 1. 

Let ~t = e -Lit and g >_ j; then by (4.34) and (4.35) for any ~ • S~M, 

(4.36) 

P~{]l=(°°, w) -~ l l  -< ~t and w • 12~J)} 

< • 

_ ~1/2 < supp(te,x ,y)  vol(Utt(x,~,~ +1) ) .  
X,y 

Since the Ricci curvature of M is bounded from below, then by the volume 

comparison theorems (see [BC], Section 11.10 or [G], Section 3.5) the volume in 
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the right hand side of (4.36) does not exceed K exp(Kt~/2) for some constant 

K > 0 independent of x, ~ and ~. This together with (1.2) and (4.36) bounds the 

left hand side of (4.36) from above by 

c - l K  exp(Kt~/~ - cte) <_ K exp(-cQ/2) = f ~ / 2 L  

for some/~  > 0 independent of e and, since (logqoe+l)(logqot) -1 = tt+lt-~ 1 ~ 1 

as ~ -~ c~, we derive (4.31). This completes the proof of Proposition 4.2, as well 

as Theorem B from Introduction. | 

Similarly to Proposition 4.5 and Theorem 4.4 from [BK], one can establish also 

the following results: 

4.10. PROPOSITION: Suppose that with Px-probability one the limit 

lim t - l d ( x ,  X( t ) )  = 
t ---* o o  

exists and is not random, which holds, in particular, when M is the universal 

cover of a compact manifold. Then with probability one, 

lim t - ld (X( t ) ,  Exp~(/~tEx(oo))) = 0. 
t ~ O O  

4.11. PROPOSITION: Suppose that M is the universal cover of  a compact surface. 

Then o~l  p(x,  .) is singular with respect to the Lebesgue measure on SxM unless 

the curvature is constant. 

4.12. Remark: The harmonic measures P(x ,  .) for different x C M are equivalent 

in view of the Harnack inequality (see, for instance, fLY]). | 

4.13. Remark: In fact, d~(y, z) < p for x, y E S~(r) implies that  d(y, z) < C log p 

where C can be expressed via the hyperbolicity constant. Thus in the same way 

as in (4.33), one derives from (4.6) that  with probability one X(t)  stays within 

the distance of order log t from the geodesic connecting x and X(cxD) (cf. fAn2]). 

| 

4.14. Remark: The referee pointed out to me that one can improve (4.31) 

dropping w E gt(x 0 and obtain a shorter analytic proof of the positivity of Haus- 

dorff dimensions of harmonic measures in the following way. It follows from 

(2.7) of Lemma 2.2 that  there is c > 0 such that,  if y = Exp~(clog(1/~)~),  

E S~M, then the distance between y and the geodesic ray emanating from x in 
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any direction ~, ]1~ - ~]] -< ~ does not exceed c -1. Therefore, by the Harnack in- 

equality at infinity from [An2] and by the exponential decay of the Green function 

G(x, y), one derives for the harmonic function h(x) = P~(ll=-x(c~,w) -~II <- ~} 
that h(x) <_ clh(y)G(x, y) < c1~ ~ for some a > 0. Still, having in mind more gen- 

eral applications where the Green function is not available I gave my probabilistic 

proof here. | 

5. T h e  M a r t i n  b o u n d a r y  

By (1.2) the Green function 

o o  

G(x, y) = / p(t, x, y)dt > 0 
I ]  

o 

exists and satisfies the following properties: 

(i) G(x, y) = Gy(x) is harmonic in M\{y}  as a function of x; 

(ii) AGy = -~fy in the weak sense where ~fy denotes the Dirac measure at y; 

(iii) G(x, y) </~-le-Zd(~'Y) for d(x, y) _> 1 where ~ > 0 is independent of x, y. 

For small d(x, y), G(x, y) behaves as log(d(x, y) ) - I  if n = 2 and it behaves 

as (d(x,y)) ~-n i f n  > 2. 

In order to introduce the Martin boundary of M one needs first the uniform 

Harnack inequality (in fact, the uniformity is not necessary here) saying that  for 

any r2 > rl  > 0 there exists a constant C r1'~2 such that,  for any x E M and a 

harmonic in B~(r2) function h > 0, 

(5.1) sup{h(y)ly 6 Bx(rl)} <_ C r*'r2 inf{h(y)ly 6 Bz(rl)}. 

This inequality under the condition of boundedness of the Ricci curvature from 

below follows from the even more general parabolic Harnack inequality proved in 

[LY]. Furthermore, by the gradient estimates in [LY] it follows that  there exists 

C > 0 such that,  for any harmonic h > 0, 

(5.2) I ~7 hi <_ Ch. 

Now the Ascoli-Arzela theorem together with (5.1) and (5.2) give rise to the 

Harnack principle: A sequence of positive harmonic functions hj in Bx(r) has 
a uniformly convergent subsequence provided there exist y E Bx(r) and C > 0 
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such that hi(Y) <_ C for all j = 1, 2 , . . . .  The limiting function must be harmonic 

in view, for instance, of the probabilistic characterisation of harmonic functions 

in B~(r) as functions h satisfying h(y) = Euh(T,(r)) which represents also the 

solution of the Dirichlet problem in B,(r) with the boundary data  equal to h on 

S, ( r ) .  Replacing here h by hj and assuming that h i ~ h as j ~ oo, we see that 

h must satisfy the same relation, and so h is also harmonic. 

Fix a point p E M and set 

{ a(~,y) i f y # p ,  a(p,y) 
Ky(x) = K(x,  y) = 0 if y = p, x # p, 

1 i f x = y = p ,  

which is called the Martin function. Let {y~ } be a sequence in M having no limit 

points in M and choose an increasing sequence of balls B(0 such that yj ~ B(O for 

all j ___ i. Then the functions Kyj are harmonic in B(0 for j > i. Since Kyj (p) = 

1, then by the Harnack inequality the functions Kyj, j _> i are uniformly bounded 

in B (i). The sequence a = {y~} is called fundamental if {Ky,} converges to a 

harmonic function K~ on M. By the Harnack principle any sequence {y~} having 

no limit points in M has a fundamental subsequence. Fundamental sequences 

corresponding to the same limit harmonic function form an equivalence class. 

The Martin boundary OM of M is defined to be the set of equivalence classes 

of fundamental sequences. If [a] E cOM, then K~ = lin~__.o~ Ky,, where {Yi} 

is a fundamental sequence associated to [a] and so points [a] E A correspond 

uniquely to certain positive harmonic functions K~ on M. Put  Ad = M U OM. 

There are many equivalent ways of defining a metric on M .  For instance, one 

can define the distance between al ,  a2 E A4 by 

(5.4) p(al,a2) = E 2  - j  sup IK~'(x) - Ka'(x)l 
j = l  zEB,(j) 1 + tK.l(X) - K~,,(x)l)" 

It follows from [An2] together with Theorem A that there is a homeomor- 

phism ~ : a M  --* 8(c¢) establishing the first part of Theorem C. One obtains 

also the unique representation of any positive harmonic function h as an inte- 

gral h = fs(oo)K~,dl~h(a) with #h being a probability measure on OM, and 

a representation of any bounded harmonic function h as an integral h(x) = 

fs(~) .fh(~)P(x, d~) where h is a Borel function on S(c~) unique up to a set 

of harmonic measure zero. The proof in [An2] for the general hyperbolic case 
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employs estimates for the Green function and for positive harmonic functions in 

certain domains defined via Gromov's "product" of points. These domains can 

be quite complicated and they do not help if one wants estimates of harmonic 

functions, such as the Harnack inequality at infinity, in cones, which is natural in 

our circumstances and is necessary in order to obtain a natural HSlder structure 

on OM. In order to do this I will assume throughout the rest of this section that 

M is a generalized CH-manifold with the Ricci curvature bounded from below 

satisfying the Uniform Visibility Axiom. In this case, in view of (2.2), Propo- 

sition 2.5(i), and Lemma 2.6 one can construct ~)-chains needed in JAn1] and 

[An2] consisting of cones, and so the machinery of these papers will work here, 

as well. Nevertheless, I will review here the probabilistic approach from [Ki]. Set 

Tp(~, O, r) = Cp(~, O)\Bp(r). 

5.1. LEMMA: For any positive 0 < r there exists fl = f~(0) > 0 such that for 

any p E M, ~ E SpM, and every positive harmonic function h defined in the cone 

Cv(~, O) and vanishing continuously on Cp(~, O) N S(oo), 

(5 .5 )  h(x) <_ ~-le-~d(~'V)h(Expp (~-I~)) 

provided x e T v (~, 0/2, ~-1). 

Proof: I proceed similarly to Lemma 4.1 in [Ki] with a modification needed in 

our more general situation. Set d = d(x,p) and r(j) = LJ-ld, j = 0,1,2, . . .  

where L = L(O) _> 2 is a big constant which will be specified below. Define 

00 + = Sp(d) NCp(~, 0/2), 0~- = Sp(L-ld) NCp(~, 20/3), 11 = r d 0 1 , 0  + = wnd01, 

and for j = 1, 2 , . . .  by induction 

lj+l = 7~;(J+l) o;.t_l, O?.t_l ---- 7r;(J+2)O;.t_l, a n d  

U .;o; 
r(j--1) <_u<_r(j-{-1) 

By (2.2) and Proposition 2.5 (i), if ~ > 0 is chosen small enough and d _> /3-1 

then 

(5.6) U D j  C Cp(~,50/6). 
J 

This construction is similar to what I had in Proposition 4.2 but the parameters 

are different. Let rj be the first exit time of X(t) from Dj. Then employing 
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the probabilistic representation of solutions of the Dirichlet problem (see, for 

instance, [KS]) in Dj one can write, for j _> 1 and y E 0+1,  

t 
h(y) / Pu{X(r j )  e dz}h(z) 

q 2  

OD~ 

< sup h(z) + Py{Tp(r(j -- 1)) < Tp(r(j + 1))} sup h(z) 

( p ; r ( j -  1 ) , r ( j -  1 ) , r ( j  + 1),2(J-D2d) sup h(z) +Qu 

where O] = ODj\(O + UO~) and Qu is the same as in (4.1). If ~ = ~(0) is chosen 

small enough, then any pair of points z, 2 e Tp(~, 50/6, fl-1) can be connected by 

a chain zi, i = O, 1 , . . . , k  with z0 = z, Zk(d) = 2, d(z, ,zi+l) = ½,B~,(1) C Cp(~,O) 

for all i, and k <_ C(O)d(z, 2) where C(0) > 0 is independent of z, 2. This together 

with the Harnack inequality (5.1) yields that there exists 5 = 5(0) > 0 such that 

(5.8) _< h(z)(h (Exp. _< 

Choosing L larger than 2 + 4a-16 -1, one derives from (3.14), (3.15), (4.1), and 

(5.6)-(5.8) that there exists ~ = ~(0) > 0 such that 

(5.9) sup h(y) < sup h(z) + ~ - l e -~ (J ) .  

Since h vanishes continuously at infinity, i.e. 

lim sup h(z) = 0, 
j--*o¢ zEO+ 

then applying (5.9) for j = 1, 2 , . . .  we derive (5.5). | 

Next, one defines a kernel function k¢ at ( E S(c~) as a positive harmonic 

function on M having a continuous extension into M U ( S ( c c ) \ ( )  with zero values 

on S(c~) \ ( .  Lemma 5.1 together with the property (iii) of the Green function 

enables us to produce kernel functions at each ( E S(c~). 

5.2. COROLLARY: Let (Yi} be a sequence of  points with y~ ~ ( E S(oc) in 

the cone topology as i -~ oc. Then any fundamental subsequence a = {Yij } 

gives rise to a kernel function k = K~ at (. All fundamental sequences from the 
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equivalence class [a] • A determine kernel functions at the same point (. This 

defines a map ~ : COM ~ S(oc) which is a continuous surjection. 

The proof of this result is the same as in Corollary 4.1 in [Ki]. In order 

to complete the identification of the Martin boundary one needs the following 

result: 

5.3. LEMMA: For any positive 0 < ~r there exists C = C(O) > 0 such that for 

any p • M, ~ • SaM, and every positive harmonic function h defined in Cp( ~, O) 

and vanishing continuously on Cg(~, 0) ~ S(oc), 

(5.10) C-l(O)po(x) <_ h(x) (h (Expp (~)))-1 <_ C(O)po(x) 

provided x • Tp( ~, 0/2, C), where Po is a positive function defined in Tp( ~, 0/2, C) 

and independent of h. 

Proof: One proceeds in the same way as in Lemma 4.2 from [Ki] with modifi- 

cations in the construction of domains below similar to the changes in Lemma 

5.1 with respect to Lemma 4.1 from [Ki]. The construction depends on num- 

bers n = L(O),C = C(O),d = d(x,p) ,  and k = k(O,d) satisfying L - k d  = C(0) 

with L and C large enough. Set r( j)  = L-J+2d for j = 0 , . . . , k  + 2,0~-+1 

_r(k+l)~- and + ~(k).,_ = Sp(r(k + 2))NCp(~,50/6), /k+l = ,,p (Zk+l, COk+ 1 = rp Ok+ 1. If 

0~-, lj, CO+ are already defined then I define COj--1 by the equality 

~j = {~ • S~(r(~ + 1)): d;(J+')(~, CO;-1) z 2(~-~)~ },  

Z~_l =.r(~).-. V~_l,Vj_l'+ =.;(~-1)o;_,, and 05= U ~o;.  
r(j+l)<,,_<r(j- 1) 

Now the domains D t , . . . ,  Dk+l widen in the direction from x to p, and not 

away from p as in Lemma 5.1. Choosing L and C large enough I can have, by 

(2.2) and Proposition 2.5(i), that 

(5.11) cO + D Sp(L2d) NCp(f,  0/2). 

Now writing for y E CO'j-I,J -- 2 , . . . , k  + 1, 

f 
h(y) = [ PufX(rj)  e dz}h(z) ,  

i i  

ODj 
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estimating h on 0 + by (5.5) and on 0] = ODj\(O + U 0~-) by (5.8) and estimating 

the probabilities of the events X( r j )  e 0~-, Z(~-j) • 0 +, X( r j )  • 63 by (3.14) and 

(4.1) one obtains (5.10) in the same way as in Lemma 4.2 from [Ki] with 

r f 
(5.12) qo(x) : / Px{X(TI) • dzl}"" / Pz~ e d Z k + l } .  | 

o; o;+, 

Lemma 5.3 implies the following Harnack inequality at infinity. 

5.4. COROLLARY: h e tWO functions, positive harmonic in Cp(~, 0), 0 > 0, hi and 

h2, vanish continuously on Cp(~, 0) [7 S(c¢), then 

(5.13) sup--hi(x) < C4 inf hi(x) 
xeT h2(x) - zeT h2(x) 

where T = Tp(~, o, C) and C = C(O) is the same as in (5.10). 

5.5. COROLLARY: The map ~o : OM ~ S(oo) introduced in Corollary 5.2 is a 

homeomorphism. 

Proof: It remains to show that ~o is one-to-one. Suppose that hi and h2 are two 

kernel functions at ¢ e S(oo) such that hi(p) = h2(p) = 1. Let ~ e SpM, Pt = 

Expv(t(), and limt.-.oopt = (. Set Ct = Cp,((t,-}) where ~t E Sp, M satisfies 

Expp,(S(t) = Pt+8. By (2.16), 

(5.14) Ct c Ct+~(,~/4) and N Ct+jr(,q4) = 0 
j>o 

where r(e) is the number from the Uniform Visibility Axiom. Proceeding as in the 

proof of Theorem 4.1 from [Ki] (see also [AS] and [Anl]) we derive from (5.13) 

and (5.14) that  the ratio hi/h2 is sandwiched between two positive constants 

independent of hi and h2, which in turn implies that hi = h2. | 

It remains to construct a natural Hhlder structure on OM and show that both 

~o and ~o -1 are Hhlder continuous, which means essentially that there exists 5 > 0 

such that, if k;1, k;2 are two kernel functions at ¢1, ¢2 E S(c¢) and ~1, ~2 E SpM 

satisfy limt-~oo Expp(t~i) = ~i, i = 1, 2, then 

(5 .15)  Ik; (x) - k ; , ( x ) l  ___  -1116 - 
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The proof proceeds in exactly the same way as in Theorems 6.2 and 6.3 from 

[AS] taking into account that by (2.16), for any p • M and ~ • SpM, 

(5.16) C7¢(t ) "~(t), ~- C C.~(~) if t > s + r . 

In addition to this, the proof in [AS] needs only the following geometrical 

statement saying that if 

Cj = C~¢(/~(~/s)) ('~ ( jr  ( r /8 ) ) ,  ~-/4), ;/4(0) = ¢, 

then there exists K > 0 such that, for all ~ • SvM and j large enough, 

(5.17) Zp(Cj) > e -Kj .  

But by Proposition 2.5(i) if rj = (j + 1)r (7r/8) + 1, then 

cj N sp( j) D {z • sp( j): z)< 1}, 

and (5.17) follows by (2.9). The remaining part of the proof is the same as in 

[AS]. The proof of Theorem C is now complete. | 

6. Conc luding  remarks 

I will discuss here two types of generalizations: (i) when the "no focal points" 

condition is replaced by the "no conjugate points" assumption; (ii) when the 

hyperbolicity of the manifold is replaced by some other condition. So assume 

that M is a complete simply connected hyperbolic manifold without conjugate 

points (see, for instance, [Ebl]). Without any further conditions one does not 

know whether there are different geodesic rays with a common origin which are 

asymptotic to each other. Still, if we assume, in addition, that  M satisfies the 

Visibility Axiom, then for any two geodesics 7e, % with ~/~(0) = %(0) = p, ~, y E 

SpM,~ 7t ~1 one has limt__.~d('y~(t),%(t)) = co. Indeed, if tn ~ co and 

d(~/e(tn), %(tn)) <_ C then the geodesic -y,~ connecting ~/e(tn) and "y,(tn) satisfies 

Lp(~/n) = Lp(~,~) > 0 and d(p,~/~) > tn - ½C , co as tn ~ co, contra- 

dicting the Visibility Axiom. So in this case the geometric boundary S(oo) is 

homeomorphic to the sphere SpM. 

Next, (2.5) fails to be true in general and, in order to obtain (2.6)-(2.9) and 

(2.17), one has to assume that the sectional curvature rather than the Ricci 
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curvature is bounded from below. In order to have some lower bound on Q,(r, ~), 

which does not have to be positive now, one needs also an upper bound on 

the sectional curvature of M. Under these assumptions I can derive again the 

conclusion of Lemma 2.14. But this does not imply Proposition 3.1, which relies 

heavily on the fact that  though one may not have the lower bound (2.42) at any 

point, still in the "no focal points" case Q~(r, ~) is nonnegative (in fact, positive) 

everywhere. I can overcome this difficulty only in the case when M is a universal 

cover of a compact manifold N or under an additional assumption (6.1) below. 

In the first case it is not difficult to see that there exist 5 :> 0 such that the 

integral of Q,(r,~) against the volume over any fundamental domain D is at 

least 5 provided d(x, D) > 5 -1. This follows similarly to Lemma 2.14 taking 

into account that for large r, Q~:(r, ~) is close to the trace of the operator of the 

second fundamental form of a corresponding horosphere which is a function on 

N. Thus the integrals of Q,  over fundamental domains which are far away from 

x are almost the same and the assertion follows similarly to (2.44)-(2.50). Now 

taking into account that the Lebesgue measure on N is invariant with respect to 

the Brownian motion on N and that X(t) is its lifting to M, we can conclude by 
t 

the ergodic theorem that  Ey fo Q,(X(s))ds is positive and it is bounded away 

from zero provided t is large enough. This is good enough to obtain the results 

of Sections 3 and 4 (see below). Note that the weak coercivity of the Laplace- 

Beltrami operator follows in this case also from [Br], and so Theorem C except 

for the HSlder structure follows from [An2]. M. Gromov suggested that, using 

local isoperimetric inequalities together with the global divergence provided by 

the hyperbolicity, one may be able to prove Theorem A under the "no conjugate 

points" condition provided M is hyperbolic which was fulfilled recently in [Cao2]. 

By [An2], this implies the first part of Theorem C under these assumptions. In 

this direction I can do by the probabilistic method the following. Suppose that 

there exists L > 0 such that,  for any x, y E M, 

/0 (6.1) Ey Q~(X(s))ds = p(s, y, z)Q~(z)dm(z)ds >_ L -1. 

It is easy to see from Theorem 4 of IF] that  (6.1) implies (3.2). Proceeding in 

the same way as in Sections 3-5 we derive from here the following result: 

6.1. THEOREM: Let M be a complete, simply connected, n-dimensional, n >_ 2, 

C a Riemannian manifold without conjugate points and with sectional curvature 
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bounded above and below with (6.1) being satisfied. Then (1.2) holds true, and 
so the top of the L2-spectrum of A is negative. Suppose, in addition, that M is 
hyperbolic and satisfies the Visibility Axiom; then the conclusions of Theorems 
B and C hold true as well (assuming the Uniform Visibility Axiom for the H61der 
structure on OM). 

The condition (6.1) depends, of course, only on the geometry of M but I do 

not know how to express it in purely geometric terms. On the other hand, it is 

clear (and important) that (6.1) is preserved under a small perturbation of the 

metric. Note that (6.1) follows from either of the following two conditions: 

(6.2) fLL2 /MP(S,y,z)Qx(z)dm(z)ds > tf 

for some L2 > L1 > 0 and ~f > 0 independent of x, y E M, or 

/M p(L, y, z, )Qx(z)dm(z)ds >>_ 6 (6.3) 

for some L, ~ ~> 0 independent of x, y E M . Indeed, by the semigroup property 

of the heat kernel p(t, x, y), (6.2) yields 

(6.4) fLI+.(L2-L,) /M p(s,y,z)Qx(z)dm(z)ds >_ n6, 
JL1 

and so (6.1) will be satisfied if n~f > -L1  inf~,z Qx(z). If (6.3) holds true, then 

multiplying both parts of (6.3) by p(s, v, y) and integrating in y against dm(y) 
we obtain, by the semigroup property of the heat kernel, that (6.3) remains true 

for any t > L in place of L which implies (6.2) with L1 = L and L2 = L + 1. 

By (2.4), Q~(z) = Azp~(z) , p~(z) = d(x, z) where Az acts in the z-variable. 

Thus integrating in (6.1) by parts and taking into account that p(s,y, z) = 
p(s, z, y) and Azp(s, z, y) = cOp(s, z, y)/cOs, we obtain 

(6.5) fo L/MP(s ,y ,z )Qx(z)dm(z)ds=/MP(L,y ,z )px(z)dm(z)-p~:(y  ) 

= Eyd(x, X(L)) - d(x, y). 

Thus, the condition (6.1) is equivalent to 

(6.6) Eyd(x, X(L)) > d(x, y) + L -1 
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with some L > 0 independent of x, y E M. Of course, (6.6) follows from (3.2), i.e. 

it holds true under the "no focal points" condition. Actually, (6.3) (and so (6.1), 

(6.2), and (6.6), as well) follows from (2.5), (2.42), and (3.4). It seems plausible 

that  the condition (6.1) (and so (6.6)) is always satisfied for some L > 0 in the no 

conjugate points hyperbolic set up, provided M has a lower bound on the Ricci 

curvature and a bounded geometry. 

6.2. Remark: The condition (6.6) makes sense even when conjugate points 

are allowed and, by Theorem 4 from [F], it always implies (3.2) with R~(s) = 

d(x, X(s)) .  These yield Theorem A assuming (6.6) without the "no conjugate 

points" condition. If, in addition, M is hyperbolic and satisfies the Visibility 

Axiom, then the conclusions of Theorems B and C hold true as well. Condition 

(6.6) is so general that it enables one to prove similar results for certain class 

of Markov processes in general hyperbolic geodesic metric spaces which will be 

discussed in another paper. | 

Another direction of research is when one does not have an exponential diver- 

gence of geodesics provided by the hyperb(>licity of M. Suppose, for instance, 

that M is a CH-manifold of rank 1 (see [Ba]). If M has a compact quotient N, 

then by [Bali the Dirichlet problem at infinity has a unique solution. Moreover, 

Ballmann and Ledrappier proved in this case that the Poisson boundary of M co- 

incides with S(co), i.e. any bounded harmonic function on M can be represented 

as an integral of type (1.1) with some Borel function ] on S(oc). Neverthe- 

less, it is not known whether the Hausdorff dimensions of harmonic measures are 

positive and what is the Martin boundary of M. The main difficulty with our 

probabilistic method in this situation is connected with flat planes in M which 

makes it hard to estimate the angular shift of the Brownian motion. Still, when 

one has a good control of these planes, say, one has only one flat plane as in 

[Ba2], then our approach works well enough. For instance, writing explicitly the 

Laplace-Beltrami operator for the example from [Ba2] we see that  the Brownian 

motion has a positive drift away from the flat plane, and so gets quickly to the 

region of negative curvature where our methods do work. Nevertheless, it does 

not seem plausible that  one can define in this direction a sufficiently general class 

of manifolds where the behavior of the Brownian motion and the description of 

spaces of harmonic functions is similar to the negative curvature case. Clearly, it 

is not sufficient to assume just that M is rank 1 without an additional assump- 
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tion that M has a compact quotient N, since if M has a point where all sectional 

curvatures are negative then M has already rank 1 but, in general, one point and 

even a compact set does not influence the structure of harmonic functions on M. 
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